Practical Applications of Artificial Intelligence in Marketing Research

Authors

DOI:

https://doi.org/10.15170/MM.2024.58.KSZ.01.03

Keywords:

artificial intelligence, market research, response willingness

Abstract

THE AIMS OF THE PAPER

The rapid advancement and broad industrial application of artificial intelligence (AI) is creating new opportunities in the field of market research. This study aims to explore the practical applications of AI in market research, highlighting its potential advantages and disadvantages. We specifically examine the attitudes of the Hungarian population toward AI, focusing on their perceptions of AI-based virtual interviewers.

METHODOLOGY

The study begins with a review of the related literature, followed by an examination of the current state of AI applications in market research. In our primary research, we surveyed the attitudes of 1,000 Hungarian adults towards artificial intelligence and AI-based virtual interviewers through computer-assisted telephone interviews (CATI), using randomly generated mobile numbers. The sample is representative by gender, age, educational level, type of settlement, and region. The data was analyzed across different demographic groups to identify differences in attitudes and potential barriers to technology acceptance.

MOST IMPORTANT RESULTS

Our findings indicate that a significant portion of respondents are resistant to AI-based virtual interviewers, particularly among older age groups and individuals with lower educational attainment. Respondents can be classified into three groups: rejecters, neutrals, and willing respondents. The study revealed that the use of a familiar voice actor’s voice enhances response willingness among neutrals, though it has little effect on the rejecters. Results suggest that personalized features that align with individual preferences may be critical for the successful adoption of these technological advancements.

RECOMMENDATIONS

The use of AI-based virtual interviewers offers several advantages in market research, such as cost-efficiency and standardized processing of large data sets. However, successful adoption requires emphasizing respondent experience and personalization. We recommend that developers consider respondent preferences during development, including interviewer gender, voice style, and a human-like approach to interaction. Additionally, it is essential to address data privacy and ethical issues, particularly in light of AI’s increasing role, to maintain respondent trust.

Acknowledgments: Data collection was conducted by KÓD Market-Opinion and Media Research Institute.

Author Biographies

Györgyi Danó, Budapest University of Technology and Economics

Assistant Lecturer

Stefan Kovács, Budapest University of Technology and Economics

Assistant Professor

References

Awan, U., Shamim, S., Khan, Z., Ul Zia, N., Shariq, S. M. és Khan, M. N. (2021), “Big data analytics capability and decision-making: The role of data-driven insight on circular economy performance”, Technological Forecasting and Social Change, 168, 120766. https://doi.org/10.1016/j.techfore.2021.120766

Brynjolfsson, E. és McAfee, A. (2017), “The business of artificial intelligence”, Harvard Business Review, 95(1), 113-121.

Brynjolfsson, E., Hitt, L. M. és Hellen, K. H. (2011), “Strength in numbers: How does data-driven decision-making affect firm performance?”, SSRN: https://ssrn.com/abstract=1819486, https://doi.org/10.2139/ssrn.1819486 , In: Budapest, Magyarország: Corvinus University of Budapest (2021) 558 p. 204-211.

Chintalapati, S. és Pandey, S. (2021), “Artificial intelligence in marketing: A systematic literature review”, International Journal of Market Research, 64, 38 - 68. https://doi.org/10.1177/14707853211018428

Danyi, P., Iványi, T. és Veres, I. (2020), “A turizmus jelene és várható változása a mesterséges intelligencia integrálásával, különösen a Z-generáció igényeire fókuszálva”, Vezetéstudomány - Budapest Management Review, 51(KSZ), 19–34. https://doi.org/10.14267/VEZTUD.2020.KSZ.03

Davenport, T. H. és Harris, J. G. (2007), Competing on Analytics: The New Science of Winning, Harvard Business Press.

Davenport, T., Guha, A., Grewal, D. és Breßgott, T. (2019), “How artificial intelligence will change the future of marketing”, Journal of the Academy of Marketing Science, 48, 24 - 42. https://doi.org/10.1007/s11747-019-00696-0

Dwyer, K. és Linton, M. (2013), “Unlocking the value of information”, IQ: The RIMPA Quarterly Magazine, 29(3), 19-23.

Fehrenbacher, D. D., Ghio, A. és Weisner, M. (2023), “Advice Utilization From Predictive Analytics Tools: The Trend is Your Friend”, European Accounting Review, 32(3), 637-662. https://doi.org/10.1080/09638180.2022.2138934

George, D. S. M., Sasikala, D. B., T., G., Sopna, D. P., Umamaheswari, D. M. és Dhinakaran, D. D. P. (2024), “Role of Artificial Intelligence in Marketing Strategies and Performance”, Migration Letters, 21(S4), 1589–1599.

Gkikas, D.C. és Theodoridis, P.K. (2019), “Artificial Intelligence (AI) Impact on Digital Marketing Research”, in: Kavoura, A., Kefallonitis, E., Giovanis, A. (szerk.), Strategic Innovative Marketing and Tourism, Springer, Cham, https://doi.org/10.1007/978-3-030-12453-3_143

Goknil, A., Nguyen, P., Sen, S., Politaki, D., Niavis, H., Pedersen, K. J., Suyuthi, A., Anand, A. és Ziegenbein, A. (2023), “A Systematic Review of Data Quality in CPS and IoT for Industry 4.0”, ACM Computing Surveys, 55(14s), 1-38. https://doi.org/10.1145/3593043

Huang, M. H. és Rust, R. T. (2021), “A strategic framework for artificial intelligence in marketing”, Journal of the Academy of Marketing Science, 49, 30–50. https://doi.org/10.1007/s11747-020-00749-9

Izsák, G., Palicz, A., Szász, K. és Varga, B. (2022), “ADAT – Az új olaj, a legújabb termelési tényező”, In: Magyar Nemzeti Bank: Új közgazdaságtan a fenntarthatóságért, Budapest, 123-132.

LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S. és Kruschwitz, N. (2011), “Big Data, Analytics and the Path from Insights to Value”, MIT Sloan Management Review, 52(2).

Ma, L. és Sun, B. (2020), “Machine learning and AI in marketing – Connecting computing power to human insights”, International Journal of Research in Marketing. https://doi.org/10.1016/j.ijresmar.2020.04.005

Mahendra, I., Ramadhan, A., Trisetyarso, A., Abdurachman, E. és Zarlis, M. (2022), “Strategic Information System Planning in the Industry 4.0 Era: A Systematic Literature Review”, 2022 IEEE Creative Communication and Innovative Technology (ICCIT), 1-7. https://doi.org/10.1109/iccit55355.2022.10119002

Mirwan, S., Ginny, P., Darwin, D., Ghazali, R. és Lenas, M. (2023), “Using Artificial Intelligence (AI) in Developing Marketing Strategies”, International Journal of Applied Research and Sustainable Sciences. https://doi.org/10.59890/ijarss.v1i3.896

Mustak, M., Salminen, J., Plé, L. és Wirtz, J. (2020), “Artificial intelligence in marketing: Topic modeling, scientometric analysis, and research agenda”, Journal of Business Research. https://doi.org/10.1016/j.jbusres.2020.10.044

Simay, A. E., Wei, Y. és Gáti, M. (2021), “Mesterséges intelligencia és marketing kapcsolatának rövid szakirodalmi áttekintése”, in: Mitev, A., Csordás, T., Horváth, D. és Boros, K. (szerk.), “Post-traumatic marketing: virtuality and reality” – Proceedings of the EMOK 2021 International Conference.

Sundström, M. (2019), “Climate of Data-driven Innovation Within E-business Retail Actors”, FIIB Business Review, 8(2), 79-87. DOI: 10.1177/2319714519845777

Szűcs, K., Lázár, E. és Németh, P. (2023), Marketingkutatás 4.0, Akadémiai Kiadó. https://doi.org/10.1556/9789634548546

Tarigan, Z. és Siagian, H. (2021), “The effects of strategic planning, purchasing strategy and strategic partnership on operational performance”, Uncertain Supply Chain Management. https://doi.org/10.5267/J.USCM.2021.2.006

Thakur, J. és Kushwaha, B. P. (2023), “Artificial intelligence in marketing research and future research directions: Science mapping and research clustering using bibliometric analysis”, Global Business and Organizational Excellence, 43, 139–155. https://doi.org/10.1002/joe.22233

West, J. és Bogers, M. (2014), “Leveraging external sources of innovation: A review of research on open innovation”, Journal of Product Innovation Management, 31(4), 814-831. https://doi.org/10.1111/jpim.12125

A tanulmányban említett kutatási módszerek elérhetőségei:

https://indeemo.com (utoljára megtekintve: 2024.05.12)

https://storeinsider.hu/cikk/hogyan-tud-kostolni-a-mesterseges-intelligencia (utoljára megtekintve: 2024.05.12)

https://www.audeering.com (utoljára megtekintve: 2024.05.12)

https://www.hellenergy.com/magyar-vilagszenzacio/ (utoljára megtekintve: 2024.05.12)

https://www.kantar.com/marketplace/solutions/ad-testing-and-development/ai-powered-ad-testing (utoljára megtekintve: 2024.05.12)

https://www.pollfish.com (utoljára megtekintve: 2024.05.12)

https://www.surveymonkey.com (utoljára megtekintve: 2024.05.12)

Downloads

Published

2025-04-22

How to Cite

Danó, G. and Kovács, S. (2025) “Practical Applications of Artificial Intelligence in Marketing Research”, The Hungarian Journal of Marketing and Management, 58(Különszám I. EMOK), pp. 25–34. doi: 10.15170/MM.2024.58.KSZ.01.03.

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.