Ethical dilemmas of artificial intelligence: overview of aversion and implications

Authors

DOI:

https://doi.org/10.15170/MM.2023.57.KSZ.03.07

Keywords:

artificial intelligence, AI, aversion to artificial intelligence, ethics

Abstract

THE AIM OF THE PAPER

The aim of the study is to investigate how Generation Z deals with artificial intelligence, with a special focus on the factors that lead to acceptance and aversion. A further aim of the study is to understand the concerns and opinions of this generation about various aspects of artificial intelligence.

METHODOLOGY

As part of the study, an online questionnaire survey was conducted among Generation Z students at the University of Miskolc. After adjusting the sample of 132 people, 131 responses could be analysed. For the questions we used a Likert scale from 1 to 5 and a semantic difference scale where respondents could express their attitude towards artificial intelligence.

MOST IMPORTANT RESULTS

According to the results of the survey, the Generation Z students in the sample have a general aversion to artificial intelligence. Based on the mean scores, students expressed concerns in the areas where the impact of technology is greatest, such as unemployment, inequality, and the controllability of technology.

RECOMMENDATIONS

Based on the study, practical suggestions can be made for educational institutions, businesses, and policy makers. In education, special emphasis must be placed on training in artificial intelligence and ethical aspects. Companies need strategies to facilitate the introduction and the government needs to accompany the development of the technology to ensure equality and compliance with ethical standards. Knowing the results, policy makers should keep an eye on the development of laws to regulate the development of artificial intelligence.

Author Biographies

Zoltán Somosi, University of Miskolc

PhD Student

Noémi Hajdú, University of Miskolc

Associate professor

References

Alexa, L., Pîslaru, M. & Avasilcăi, S. (2022), “From Industry 4.0 to Industry 5.0 – An Overview of European Union Enterprises”, In: Draghici, A., Ivascu, L. (Eds) Sustainability and Innovation in Manufacturing Enterprises. Advances in Sustainability Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-7365-8_8

Beaumier, G. (2022), Book review, Rights for Robots: Artificial Intelligence, Animal and Environmental Law, Earth System Governance, 11, p.100129. https://doi.org/10.1016/j.esg.2021.100129

Bosse, D., Thompson, S. and Ekman, P. (2023), In consilium apparatus: Artificial intelligence, stakeholder reciprocity, and firm performance. Journal of Business Research, Elsevier, 155. https://doi.org/10.1016/j.jbusres.2022.113402

Coombs, C., Stacey, P., Kawalek, P., Simeonova, B., Becker, J., Bergener, K., Carvalho, J.Á., Fantinato, M., Garmann-Johnsen, N.F., Grimme, C., Stein, A. & Trautmann, H. (2021), What is it about humanity that we can’t give away to intelligent machines? A European perspective. International Journal of Information Management, 58, p.102311. https://doi.org/10.1016/j.ijinfomgt.2021.102311

Danyi, P. (2018), A mesterséges intelligencia alkalmazása az árazásban. Marketing & Menedzsment, 52(3-4), 5-18.

Danyi, P. (2019), A mesterséges intelligencia árazásbeli alkalmazásának várható hatásai. Marketing & Menedzsment, 53(1), 17-29.

Dwivedi, Y. K., Rana, N. P., Janssen, M., Lal, B., Williams, M. D., & Clement, M. (2017), “An empirical validation of a unified model of electronic government adoption (UMEGA)”, Government Information Quarterly, 34(2), 211-230. https://doi.org/10.1016/j.giq.2017.03.001

Dwivedi, Y. K., Rana, N. P., Jeyaraj, A., Clement, M., & Williams, M. D. (2019), “Re-examining the unified theory of acceptance and use of technology (UTAUT): towards a revised theoretical model”, Information Systems Frontiers, 21, 719–734, https://doi.org/10.1007/s10796-017-9774-y

van Esch, P, Black, J. S. & Ferolie, J. (2019), “Marketing AI recruitment: The next phase in job application and selection”, Computers in Human Behavior, 90, 215-222, https://doi.org/10.1016/j.chb.2018.09.009

Felice, F.D., Petrillo, A., Luca, C.D. & Baffo, I. (2022), “Artificial Intelligence or Augmented Intelligence? Impact on our lives, rights és ethics”, Procedia Computer Science, 200, 1846–1856. https://doi.org/10.1016/j.procs.2022.01.385

Garett, R. & Young, S.D. (2022), “The importance of diverse key stakeholders in deciding the role of artificial intelligence for HIV research and policy”, Health Policy and Technology, 11(1), 100599. https://doi.org/10.1016/j.hlpt.2022.100599

Giordano, G., Palomba, F. & Ferrucci, F. (2022), On the use of artificial intelligence to deal with privacy in IoT systems: A systematic literature review. Journal of Systems and Software, 193, 111475–111475. https://doi.org/10.1016/j.jss.2022.111475

Haenlein, M. and Kaplan, A. (2021), “Artificial intelligence és robotics: Shaking up the business world and society at large”, Journal of Business Research, 124, 405–407. https://doi.org/10.1016/j.jbusres.2020.10.042

Howarth, J. (2021), 57+ Amazing Artificial Intelligence Statistics (2022). https://explodingtopics.com/blog/ai-statistics (Letöltve: 2022. december 12.)

Jain, R., Garg, N. & Khera, S.N. (2022), “Adoption of AI-Enabled Tools in Social Development Organizations in India: An Extension of UTAUT Model”, Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.893691

Janarthanam, S. (2019), “The Big 5 AI problems”, Medium.com, https://medium.com/infinitethoughts/the-big-5-ai-problems-f625adf299a (Letöltve: 2022. december 12.)

Johnson, B. (2022), “Metacognition for artificial intelligence system safety – An approach to safe and desired behavior”, Safety Science, 151, 105743. https://doi.org/10.1016/j.ssci.2022.105743

Jovanovic, B. (2022), 55 Fascinating AI Statistics and Trends for 2022. https://dataprot.net/statistics/ai-statistics/ (Letöltve: 2022. december 12.)

Kar, A.K., Choudhary, S.K. & Singh, V.K. (2022), “How can artificial intelligence impact sustainability: A systematic literature review”, Journal of Cleaner Production, 376, 134120. https://doi.org/10.1016/j.jclepro.2022.134120

Kemp, S. (2022), DataReportal – Global Digital Insights. https://datareportal.com/reports/digital-2022-hungary?rq=hungary (Letöltve: 2022. december 12.)

Kotler, P., Kartajaya, H. & Setiawan, I. (2021), Marketing 5.0: Technology for Humanity, 1st ed. Hoboken, New Jersey: Wiley. ISBN:10: 1119668514.

KSH (2020), A háztartások információs- és kommunikációseszköz-használatának főbb jellemzői. https://www.ksh.hu/docs/hun/xftp/idoszaki/ikt/2020/01/index.html (Utolsó letöltés: 2023.november 23.)

Kudashkina, K., Corradini, M.G., Thirunathan, P., Yada, R.Y. & Fraser, E.D.G. (2022), “Artificial Intelligence technology in food safety: A behavioral approach”, Trends in Food Science & Technology, 123, 376–381. https://doi.org/10.1016/j.tifs.2022.03.021

de Lamotte, Malenka, (2020), “Enlightenment, Artificial Intelligence and Society”, IFAC-PapersOnLine. 53(2), 17427-17432. https://doi.org/10.1016/j.ifacol.2020.12.2110

Lane, P. (2022), 12 Key Digital Marketing Channels (& How to Use Them). https://terakeet.com/blog/digital-marketing-channels/ (Letöltve: 2022. december 12.)

Miller, G.J. (2022), “Stakeholder roles in artificial intelligence projects”, Project Leadership and Society, 3, p.100068. https://doi.org/10.1016/j.plas.2022.100068

Nguyen, Q.P. and Vo, D.H. (2022), “Artificial intelligence és unemployment:An international evidence”, Structural Change and Economic Dynamics, 63, 40–55. https://doi.org/10.1016/j.strueco.2022.09.003

O’Connor, S. and Booth, R.G. (2022), “Algorithmic bias in health care: Opportunities for nurses to improve equality in the age of artificial intelligence”, Nursing Outlook, 70(6), 780–782. https://doi.org/10.1016/j.outlook.2022.09.003

Piskóti, I. (2012), „A társadalmi marketing modellje és hazai működésének feltételei”, Gazdaságtudományi Közlemények, 6. kötet, 1. 103-120.

PricewaterhouseCoopers (2022), Become a leader in AI és Analytics: PwC. https://www.pwc.com/us/en/tech-effect/ai-analytics/ai-business-survey.html (Letöltve: 2022. december 12.)

Rouidi, M., Elouadi, E. A., Hamdoune, A., Choujtani, K. & Chati, A. (2022), “TAM-UTAUT and the acceptance of remote healthcare technologies by healthcare professionals: A systematic review”, Informatics in Medicine Unlocked. 32, 101008, 1-14.

Siddiqui, O. (2020), 5 Most Effective Digital Marketing Channels for Your Business https://cmasolutions.com/blog/5-most-effective-digital-marketing-channels-for-your-business/ (Letöltve: 2022. december 12.)

Stahl, B.C., Rodrigues, R., Santiago, N. & Macnish, K. (2022), “A European Agency for Artificial Intelligence: Protecting fundamental rights and ethical values”, Computer Law & Security Review, 45, 105661. https://doi.org/10.1016/j.clsr.2022.105661

Sujan, M.A., White, S., Habli, I. & Reynolds, N. (2022), “Stakeholder perceptions of the safety and assurance of artificial intelligence in healthcare”, Safety Science, 155, 105870. https://doi.org/10.1016/j.ssci.2022.105870

The Lancet Digital Health (2021), “Can artificial intelligence help create racial equality in the USA?”, The Lancet Digital Health, 3(3), e135. https://doi.org/10.1016/s2589-7500(21)00023-6

Venkatesh, V., Morris, M.G., Davis,G.B. & Davis,F.D. (2003), “User Acceptance of Information Technology: Toward a Unified View”, MIS Quarterly, 27(3).

World Economic Forum (2016), Top 9 ethical issues in artificial intelligence. https://www.weforum.org/agenda/2016/10/top-10-ethical-issues-in-artificial-intelligence/ (Letöltve: 2022. december 12.)

KSH (2020), Virtuálisan együtt, mégis egyedül? https://www.ksh.hu/docs/hun/xftp/stattukor/virtualis_egyuttlet/index.html (Letöltve: 2022. december 12.)

Yan-ping, L. & Ai-qin, Q. (2022), “Replace or create: Analysis of the Relationship between the Artificial Intelligence and Youth Employment in Post Epidemic Era”, Procedia Computer Science, 202, 217–222. https://doi.org/10.1016/j.procs.2022.04.029

Yang, C.-H. (2022), “How Artificial Intelligence Technology Affects Productivity and Employment: Firm-level Evidence from Taiwan”, Research Policy, 51(6), 104536. https://doi.org/10.1016/j.respol.2022.104536

Downloads

Published

2023-12-22

How to Cite

Somosi, Z. and Hajdú, N. (2023) “Ethical dilemmas of artificial intelligence: overview of aversion and implications”, The Hungarian Journal of Marketing and Management, 57(Különszám EMOK 3), pp. 65–74. doi: 10.15170/MM.2023.57.KSZ.03.07.