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Abstract:

In this paper we examine the evolution of network formation. We present a
model in which companies in an industry can innovate alone or in alliance
with others. Alliance formation is based on the cognitive distance of
companies: if two companies form an alliance, their probability of success
in innovation depends on their proximity in knowledge space, that is,
their cognitive distance. Knowledge, on the other hand, is modelled in
two dimensions: breadth and depth. The main results of our analysis
are that in the present setting heterogeneity decreases among companies
whilst innovation can increase and decrease also, depending on the initial
parameters of the industry’s knowledge endowment. The model also
reveales the importance of external shocks in maintaining heterogeneity
and concludes with a possible typology of cluster evolution among the
dimensions of heterogeneity and innovativeness.





Innovation and Diversity in a

Dynamic Knowledge Network∗

1. Introduction

The evolution of economic clusters, or, in a wider sense, regional economic
activity and agglomeration, has become a frequently analysed area in
contemporary economics. Based on the work of Krugman (1991) and the
more practice-oriented contribution of Porter (1990) the field has grown
enormously in recent years. Although very diversified, the roots of this
line of economic thinking goes back to classical economics, namely The
Wealth of Nations by Adam Smith (Smith, 1776). The main interest in
Simth’s work was the accumulation of wealth and he argued that economic
growth stems from the division of labour and knowledge accumulation,
which are two mutually reinforcing processes.

In modern economics Robert Solow put the question of growth into the
focus of analysis with his neoclassical growth model (Solow, 1956). The
main contribution of this model is that, if we include solely labour and
physical capital into the set of production factors, economic growth can be
only temporary: per capita production can not increase in the long-term.
However, if (exogenous) technological change is integrated into the model
(knowledge is included in the set of production factors), it can be shown
that – given several assumptions – the long run growth rate of per capita
output equals that of technological level: this is where long-term economic
growth stems from. Later, endogenous growth theory tried to trace the
specific role for knowledge in sustainable economic growth. (Arrow, 1962,
Romer, 1990, Grossman and Helpman, 1991, Aghion and Howitt, 1992,
Silverberg and Lehnert, 1994)

Leading directly from here is the question of how new knowledge is
created and how it diffuses in the economy. Whilst the question of
how new knowlegde is created remains largely unexplained, the literature
on knowledge spillover treats the latter issue quite thoroughly. Jaffe
(1986) proves that innovation activity is not isolated in the economy,
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but innovating companies use knowledge generated in other points of the
economy as inputs to their knowledge generation processes. This clearly
shows that knowledge is diffusing. Other studies, however, revealed that
these knowledge spillovers are spatially bounded (Acs et al., 1992; Jaffe
et al., 1992; Anselin et al., 1997). According to their findings, companies
are more efficient in exploiting knowledge coming from other companies,
universities and research institutes if they are located close to these sources.
Jaffe et al. (1992) show, that the localised effects of spillovers die out over
time, although this process is very slow.

The reasons why knowledge diffusion is spatially bounded are generally
attributed to the tacit nature of knowledge. The distinction between
tacit and codified knowledge comes from Polanyi (1966), although in
contemporaneous literature its meaning and use is somewhat blurred (De
Carvalho et al., 2006). Codified knowledge is easily formalised, and so
easily communicated over long distances without loss of information or
meaning. Tacit knowledge, however, can not be formalised, and so its
transfer requires direct face-to-face interactions between the sender and
the reciever, which in turn needs spatial proximity among agents. Hence
tacit knowledge mainly spreads locally. On the other hand, companies
can save travelling and other transaction costs if they locate close to each
other in order to exploit tacit knowledge coming from other companies or
institutions. This logic contains the conclusion that spatial concentration
(or the boundedness of knowledge spillovers) is only neccesary in those
industries where new knowledge is a critical competitive factor (Audretsch
and Feldman, 1996a), and where knowledge is basically tacit (Sorenson,
2005).

These findings refocus our attention on local economic activity and the
dynamics of agglomerations and knowledge networks. For companies
relying on new knowledge as the source of their competitive advantage,
it seems clearly useful to locate close to each other, and to establish
strong linkages among each other in order to gain easy and immediate
access to new knowledge. The resulting networks (or clusters) show tight
cooperation, quick knowledge diffusion and a high level of innovativeness.
Obviuosly, clustering tendencies and advantages from clustering differ
among industries as these industries differ in the extent to which access
to new knowledge is important, in the tacitness of knowledge used and
whether the diffusion is mediated by knowledge sharing or knowledge
broadcasting processes (Cowan, 2006).
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Clusters and knowledge networks have been studied widely in the
literature. Here we do not provide a thorough review of the literature, but
we would mention some summarising works. Clusters are basically studied
empirically. Numerous case studies present succesful and unsuccessful
cases of local economic agglomerations (clusters). Karlson (2008) collects
contemporary work on cluster research. However, Malmberg and Power
(2006) emphasise that the notion of clusters is still not clearly defined: the
actual characterization largely depending on the focus of different research.
Although there are numerous empirical works, modelling clusters is still
work-in-progress. Apart from models of new economic geography (initiated
by Krugman, 1991), which miss an explicit dynamic structure, Brenner
(2004) gives a simple but interesting dynamic model of local industrial
clusters.

Regarding knowledge networks, once again many empirical studies exist,
mainly based on R&D cooperation databases as well as patent statistics
(see Giuliani 2007, Varga and Parag, 2009, for instance). These studies
are at the beginning of an important reserch avenue and they try to trace
a role for network characteristics relating innovation. On the other hand,
modelling networks also have a wide literature. Cowan (2006) gives a good
summary of network models used in innovation theory. An important
element in network modelling is simulation which stems from the fact that
even very simple network models are analitically intractable. In this paper
we follow the latter approach by analysing knowledge networks through
network modelling and executing simulations to gain an insight into the
processes of the model.

However, there is another important line in contemporary literature on
innovation: that of heterogeneity and complementarity. According to
this, a cluster becomes dynamic and innovative through the diversity
of technologies, production processes employed and product variants
produced by the companies in the industry (cluster). Using the terminology
of the literature, we can say that companies operate on different knowledge
bases (Pavitt, 1998; Nelson, 1998). The diversity of these knowledge
bases gives real innovation potential: the combination of different elements,
recognising complementarities reveal a wide space for innovation based on
association. The strength of innovative clusters lies in frequent interactions
among diverse knowledge bases which is mediated by the increasing number
of links between companies. Hence, advantages in diversity can be
exploited rapidly.
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On the other hand, it is understood that it is not heterogeneity itself that
contributes to innovativeness, but rather complementarities in knowledge.
This leads to the recognition that innovation does not grow indefinetly
as heterogeneity increases. Rather, there exists an inverted U-shaped
relationship between the two (Nooteboom, 1999). Too little heterogeneity
means that companies know mainly the same, and so there is no room
for combinig ideas: innovation activity is low. On the other hand, if
heterogeneity is too high, companies do not even understand each other:
they can not communicate effectively, and so innovation ceases. In our
study we take this inverted U-shaped relationship between knowledge
heterogeneity and innovativeness as given. For a detailed discussion on
the topic see for example Cohen and Levinthal (1990), Nooteboom (2004),
Wuyts et al. (2003), Cowan et al. (2007). Boschma and Iammarino (2008)
emphasize the role of related variety in innovative performance. They
add to the question of heterogeneity the important insight that diverse
knowlede bases need to be somewhat related, complementary, in order to
be useful for innovative activity. This is in line with the considerations
about possible negative effects of heterogeneity.

This argument about heterogeneity has an important implication on cluster
evolution. Companies, who interact frequently and form joint research
alliances, gradually lose their diversity as they learn from each other.
After a while, companies know the same having absorbed everything
possible from the cluster, and so diversity disappears taking the wind out
of innovation’s sail (Cowan et al. 2007). We can therefore expect the
cluster to have a special lifecycle in which the initial phase charaterised by
dynamism and innovativeness is followed by a mature and declining phase
when innovation and dynamism erode (Audretsch and Feldman, 1996b,
Pouder and St. John, 1996).

On the contrary, however, there is some evidence that innovation and
heterogeneity can be sustained in the long run. These results are in
line with the previous findings: if heterogeneity goes hand-in-hand with
innovation, the two must be observed jointly, or not at all. Regarding the
lifecycle mentioned above, it seems that, in order to maintain innovation,
heterogeneity must be rebuilt in the cluster. This can be easily done by
chanelling new knowledge into the cluster from outside (Baum et al., 2003;
Cowan, 2006). However, Knott (2003) builds and analyses a model in which
heterogeneity and innovation are sustained inside the industry without
extra-cluster linkages.
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In this study we focus on the three issues introduced so far, namely
innovation, locality in networks and heterogeneity in knowledge. In order
to do this we built a model of an innovation network and then executed
simulations in order to gain insight into the inherent mechanisms of
the model and analyse its implications. The model is a straightforward
extension of the model of Cowan et al. (2007). An industry is given in
which companies are characterised by their knowledge bases. Depending
on the similarity/dissimilarity of these bases it can be profitable or
unprofitable to form alliances in order to carry out joint R&D activities.
Hence networks are formed in the industry. However, in contrast to Cowan
et al. (2007) in our model knowledge is modelled in two dimensions,
namely breadth and depth, following Prencipe (2000) and Ozman (2006).
companies can be active in different knowledge (technological fields) and
can have different levels of expertise in each field. In the main part of this
paper we analyse the evolution of the resulting networks, thus focusing on
dynamic aspects of the three variables under consideration (i.e. innovation,
locality and heterogeneity).

Our results show that, as implied by the studies mentioned earlier, the
closed network of inventors loses its heterogeneity: companies become
more homogeneous over time. On the other hand, besides decreasing
heterogeneity, we can obtain both more and less innovation in a network.
Which case occurs depends on the properties of the initial characteristics
of the knowledge endowments of the companies and the industry as a
whole – an also on pure chance. This conclusion leads us to build a
typology of cluster evolution which differentiates between evolutionary
processes among the dimensions of change in heterogeneity and change
innovativeness. Our model gives examples of two types from this typology,
but contains the possibility of the other two types.

On the other hand we find path dependency and an important role
for external shocks in maintaining heterogeneity in the model networks.
Learning seems not to have altered our results, although it strengthens the
dynamics present in the model with more intense changes in our output
variables. Finally, we offer a few words on cluster emergence in which
we emphasise the role of diversity in the establishment of new knowledge
networks ’from zero’.

The paper is structured as follows. In Section 2 we present the model
with all its important features. In Section 3 we outline the methods of
our simulations. Section 4 presents the analysis of the simulation results,
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Section 5 summarises our results on heterogeneity and innovation and gives
a typology of cluster evolution. Section 6 concludes our paper.

2. The Model

The model industry is populated by N companies. The number of
companies is constant over time so we disregard entry and exit in our
approach. Following Prencipe (2000) we consider companies’ knowledge
along two dimensions, namely the breadth and depth of knowledge. By
breath we mean how many technological areas a companies’ knowledge
base covers and depth refers to the expertise a company has in these
fields. Technological or knowledge fields can be bounded according to
the technological features of the components of the final product. For
example an aircraft producer needs to have some knowlegde in the field of
engines, autopilot systems, hydraulics, air conditioning, etc. In these fields
companies can have different levels of expertise, which largely corresponds
to the degree to which development processes of the different components
are carried out in-house (Prencipe, 2000).

According to these, each company is characterized by a knowledge-
portfolio which covers both the breadth and depth of companies’ knowledge
bases. This portfolio of company n is represented by the vector kn =
(kn

1 , k
n
2 , . . . , k

n
w), where w is the number of possible technological fields and

kn
i represents company n’s knowledge level in technological (knowledge-)

field i. Higher the value of kn
i , deeper the knowledge company n has in field

i. Of course, the elements of a company’s knowledge vector can be zeros, so
we only assume that kn

i ≥ 0 for all n ∈ (1, 2, . . . , N) and i ∈ (1, 2, . . . , w).1

Consequently, the more kn
i > 0 company n has, the broader is company n’s

knowledge portfolio, i.e. it has competence in more technological fields.

At the outset, companies’ knowledge portfolios are generated randomly,
in two steps. First, every i ∈ (1, 2, . . . , w) technological field becomes
part of company n’s portfolio with probability pe, for all i and for all n.
The value of pe is a parameter of the model.2 Second, if technological
field i is part of company n’s portfolio, then a given kn

i value is assigned
to the company, choosen randomly from the set (1, 2, . . . , kmax

i ). kmax
i

1kn
i = 0 menas that company n has no expertise in field i.

2This parameter can be interpreted as the density of technological fields companies have
competence in. This is because on average companies will have pew technological fields in their
portfolio.
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stands for the technological frontier in technological field i. For an easier
interpretation, we set kmax

i = kmax for all i. Of course the technological
frontier will evolve over time with companies’ innovative processes.

As a consequence of our interpretation of companies’ knowledge bases
we can place the companies in a w-dimensional knowledge-space. A pair
of companies is then characterized by their distance in knowledge space.
Handling knowledge along two different dimensions (i.e breadth and depth)
raises the issue of measuring similarity-dissimilarity of companies. This
can be done by measuring the angle of two companies in knowledge-
space as done by Cowan et al (2006). However, this approach treats
two companies as completely similar if they share the same knowledge
fields but one of them is far ahead of the other according to depth of
knowledge. On the other hand, in our context it is also relevant how
distant two companies are in the depth of knowledge. Therefore we measure
the similarity/dissimilarity of the knowledge bases of two companies by
the euclidean distance of points kn and km in the knowledge-space. This
distance can be regarded as the cognitive distance of two companies as it
refers to their similarity/dissimilarity in competences and knowledge (see
e.g. Nooteboom, 2004). Thus, the distance of company n and company m
according to their knowledge bases is simply defined in our model as:

dn,m =
√

(kn
1 − km

1 )2 + (kn
2 − km

2 )2 + . . .+ (kn
w − km

w )2 =

√√√√ w∑
i=1

(kn
i − km

i )2

Companies can effectively communicate with each other if they share
at least some technological fields in which they operate. However, if
companies are competent in exactly the same fields, they can still learn
from each other if one company knows more than the other, although
which company learns and which recieves knowledge is predetermined in
this case. On the other hand, for the effective communication it is required
that companies be close in the depth of their knowledge as well, because
otherwise one of them would be so advanced relative to the other, even if
in the same field, that their communication would break down.

2.1. Innovation

In our model, innovation is modelled as a random process. Innovation
occours with a given probability specified above. On the other hand,
companies can innovate alone and in alliances with each other. How the
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probability of innovation is determined is different in the two cases.

2.1.1. Separate innovation

When companies innovate alone, all they can do is to increase their
knowledge level in one of their existing knowledge fields. In this case, we
assume that companies innovate with probability p0, which is a parameter
of the model. If innovation occours, one field is selected randomly from
the company’s portfolio, and the knowledge level in this field is updated
according to:

kn
i (t+ 1) = kn

i (t) + 1

where t is the time index. This forumlation represents that through
innovation companies move upwards on the knowledge ladder, deepening
their knowledge in a given field. Assuming that the value of knowledge
to the company is represented by the knowledge level, we can easily show
that the expected value of separate innovation equals the probability of
this kind of innovation, i.e. p0.

3

2.1.2. Innovation in alliances

The other possibility for companies to innovate is to look for partners
in the industry. However, if two companies form an alliance, not only
innovation occurs, but they can learn from each other also. We disregard
this possibility for the time being, but incorporate it into the analysis in
section 4.3.

Innovation between two companies takes the following form in our model.
If company n and m meet, they innovate with probability pn,m, depending
on their distance in knowledge-space: pn,m = f(dn,m). According to
those mentioned in the Introduction, there is an optimal distance between
companies, denoted by δ, where the probability of success is the highest.
Moving farther from this distance in either direction, the probability of
success falls. Thus f(d) is single-peaked at δ and symmetric around δ,
being monotonically increasing if d < δ and monotonically decreasing if
d > δ. This solution is borrowed from Cowan et al. (2007).

It seems straightforward to assume that allied companies will innovate in
those areas where they both have competence. This can be acknowledged

3See derivations in the Appendix.
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realtively easy by intuition. When R&D alliances form, the partners set
the areas in which they will work together. However, a company is not
interested in choosing areas where the company itself or the partner is not
competent as it would radically lower the chance of successful innovation.
As research fields are narrowed in this way, it becomes highly unlikely
that the alliance will innovate at a field where either of the partners have
no competence. However, we will relax this assumption later by allowing
alliances to innovate in those fields where either of the allying companies
have competence.

When deciding whether to form an alliance with another company or not,
companies must evaluate the expected value of joint innovation. It is
showed in the Appendix that the expected value of joint innovation is
pn,m in the case of company n and m, i.e. it equals the probability of joint
innovation.

2.2. Network formation

Given these results, we can see, which companies will form an alliance.
Consider, that the maintenance cost of a partnership is c in each period.4

In this case, an alliance between company n and company m will form, if
the expected value of the joint innovation exceeds the costs of partnership
formation:

pn,m > c

Therefore, formation of a link is simply the function of the distance of
the two companies considered.5 Holding c constant, the number of links
a company has is only dependent on the average distance between it and
the other companies. This distance, in turn, depends on the parameters
of the outeset of the model, namely kmax, w and pe. As dn,m = dm,n by
definition, pn,m = pm,n. This means that if a partnership with company m
is profitable for company n, it is also profitable for company m. So links
will be stable in the sense that all alliances that form is beneficial for both
partners, and so they are intersted in keeping it alive at least until the next
period when knowledge bases change and companies’ distances change as
well.

4Of course, it is a simplification that the cost of maintaining a relationship is independent of
the number of these relationship: these cost may increase as the number of links grow which is
an interesting extension of the present model.

5Recall that pn,m = f(dn,m)!

9



The probability of successful joint innovation must reflect our arguments
about the optimal cognitive distance presented in the Introduction, i.e.
there must be a cognitive distance at which pn,m is the highest for all
n,m pairs. This relationship between cognitive distance and innovative
performance can be formulated many ways: we follow the simplest rule for
f(dn,m), which is also used by Cowan et al. (2007):

pn,m = 2p0

1− |dn,m − δ|
2ρ


.

This formula gives an inverted V form for the above relationship with δ
being the optimal cognitive distance for innovation (with the highest pn,m)
and ρ measures the base width of the inverted V. That is, the larger ρ is,
the more companies become suitable partners according to their cognitive
distance.

Our model gets a dynamic character when we iterate the alliance-formation
and innovative process. Given a network established according to the
previous rules, some companies innovate and some not, therefore knowledge
bases change which alters the cognitive distance between companies. This
causes some links to be dissolved and some to be maintained, thus our
network evolves as time passes by. We are primarly interested in this
evolutionary process as described in what follows.

2.3. Output measures

As discussed in the Introduction we are interested in the co-evolution of
innovation, locality and knowledge heterogeneity in the networks which
we build according to the rules detailed above. In order to capture these
characteristics we use three output measures along which our simulation
results can be interpreted. These are (i) heterogeneity; (ii) innovativeness;
(iii) clustering.

• Heterogeneity. As it was pointed out in the Introduction,
heterogeneity seems to be an important factor in defining
innovativeness. The heterogeneity of a population can be measured
in different ways. In our context heterogeneity means diversity in the
knowledge bases of the companies. As the similarity of companies’
knowledge bases with regard to their joint innovation potential is
linked to their distance in knowledge space (see the model description),
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it is straightforward to use a similar measure in order to refer to
their diversity. For this reason we calculate the average distance
of companies. However this in itself is not a useful measure of
heterogeneity because if the knowledge space widens in response to
innovation, the possible average distance increases also. To rule out
this bias we relate average distance to the diameter of the knowledge
space and so we obtain a measure of heterogeneity which is between
zero and one (with value zero in case of total homogeneity and value
one when companies are as different as possible).6

• Innovativeness. As our main focus is on innovation activity, we
measure how innovative companies are in the industry. We do this by
simply counting the number of innovations appearing in each period
(both joint and own innovations).

• Clustering. It is frequently agrued in the literature that dense
local interactions among economic agents contribute to innovativeness.
Translating this to the language of networks this means that the
presence of local clicks is favorable for innovation. To measure
this kind of cliquishness we use the common measure of clustering
coefficient as an output variable. The clustering coefficient measures
how much a network is clustered, i.e. how much one’s friends are
friends of each other (Cowan, 2006). This measure is based on counting
links in a network, but it reveals some additional information about
the structure of the network in contrast to simply counting the links
between agents (i.e. using degree as an output measure). However,
clustering itself can be misleading in the case of evolving networks
therefore we introduce a more convenient measure of localty in what
follows.7

3. The simulation setting

The model described so far can not be treated analytically. This is not
mainly due to its complexity but to the heterogeneity of agents, i.e. that we
can not use a representative agent approach. For this reason it is a common
method to use simulations in network theory. However, different kinds of
simulation can be executed depending on the purpose of the researcher.
Here we use simulation techniques in order to substitute for the analytical

6See the Appnedix for further discussion.
7See section 4.1.2 an the Appendix for further discussion.
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analysis of our model. A first possibility in this line is to consequently take
all parameter combinations and run the simulation for each combination.
Of course the parameter-ranges must be bounded in this case and a minimal
parameter-step must be determined, and so we can not examine literally all
parameter combinations, although these restrictions can be meaningfully
managed by the researcher. However, in the case of too many model
parameters this method can become cumbersome. The other possibility is
to run Monte Carlo simulation, i.e. to iterate the simulation with randomly
generated parameters. Then it is easy to use statistical methods to analyse
the correlations between parameters and output measures. This method is
followed in this paper.

As a summary of our model, in Table 1 we present the input parameters
and output measures being used.

Input parameters
N The number of companies
kmax The technological frontier at the outset
w The number of technological fields
pe The density of technological fields in companies’ portfolios
p0 The probability of separate innovation
δ Optimal cognitive distance
ρ The measure of the amount of possible partners
c The cost of partnership

Output variables
Heterogeneity Average distance
Innovation Number of innovation
Cliquishness Clustering coefficient

Table 1: Input parameters and output measures.

With regard to the design of our simulation experiments, we proceeded
as follows. For the model described earlier, 1.000 independent runs were
executed. In each run the input parameters were generated randomly
(Table 2 summarises the intervals in which the parameters were allowed
to vary). Each run was executed for 300 consecutive periods, i.e. the
link-formation process and the consequent update of knowledge bases were
iterated 300 times during every run. In each period the three output
statistics were calculated and recorded, and so we have a record of the
dynamic evolution of networks; moreover we have 1.000 such records.
This method of simulations yields the opportunity to analyse the effect
of different input parameters on the evolution of networks. We turn to the
analysis in the next section.
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N [20, 100] p0 (0, 1)
kmax [1, 20] δ (0, 20)
w [2, 20] ρ (0, 20)
pe (0, 1) c c = p0

Table 2: Intervals of input parameters during the simulations.

4. Discussion of simulation results

4.1. Descriptive statistics and dynamic analysis of output
measures

As a first glance at the simulation results, it is interesting to see what
the overall dynamics of networks look like. For this reason we posed the
question as to whether there are networks at all and, if there are, do they
change over time, or remain stable. We sorted the specific runs according
to the change in link number and the initial characetristics of the network.
That is, we checked, if during a simulation run (i) the network was empty
at the beginning or not, (ii) the network changed during the 300 periods
or not.8 Table 3 presents these descriptive results from the simulations.

Initially empty Initially not empty

Evolving 75 869
Stable 56 0

Table 3: Basic characetristics of the simulated dynamic networks.

As it is obvious from the table, vast majority of the runs produced evolving
networks, which were not empty at the beginning. Only 5,6% of the
networks were stable (i.e. no links dissolved or formed during the runs),
and these networks were in every case empty networks. This points to the
fact that stability of really existing networks (i.e. there exists links among
the nodes) is a marginal characteristic of our model which is detected only
in those cases when input parameters do not allow for the establishment
of linkages at the beginning of network evolution.9 For this reason we
can leave aside the analysis of this kind of network. More interesting is
the case of initially empty networks which evolved over time. In these
cases input parameters are not able to generate link formation among

8A network being empty means that there are no links among the nodes, while change in the
network means that at least some links dissolve over time and some new links form.

9Whether links form at the beginning or not, depends on the values of input parameters.
For example high average cognitive distance among companies associated with a low value of
optimal cognitive distance may lead to empty networks as it is not optimal for companies to
form alliances.
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companies. However, totally probabilistic innovative activity of separated
companies lead to an appropriate change in knowledge bases, which, in
turn, generates alliances. This early finding is interesting, as some answers
to the question of emergence of innovative clusters may lie behind this
result. In section 4.4 we briefly return to this issue. In what follows, we
analyse the charactersitics of the majority of our experiments, i.e those 869
networks which were not empty at the beginning and evolved over time.

4.1.1. Innovation

First, we look how innovation evolves over time in our experiments.10 We
took those 869 runs where an (initially not empty) network evolved over
time and calculated the average change in innovation for all runs. That
is, the changes in innovation between all periods were recorded and the
average of these changes was calculated. Thus we got a value for all 869
cases – which show how, on average, innovation evolved through time.
The average of these values is -0,122 which suggests a decreasing trend in
innovation. However, this mean is accompanied by a standard deviation
of 0,171 which results in a 140% relative standard deviation in absolute
value. Standard hypothesis testing shows that in sipte of this high relative
deviance the mean is significantly different from zero. It is interesting to
look at the histogram of the values of average change on Figure 1.

Figure 1: The distribution of average change in innovation.

Average change in innovation follows a rather skewed distribution. The
most likely event is to have an average decrease between -0,01 and
0. However, 12% of the networks show increasing innovativeness – a

10By innovation we mean the number of innovations observed in the industry, as described in
the previous section.
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considerable amount, although not the majority. The same results hold,
if we consider relative change in innovation, i.e. if we relate innovation
activity in the last period to that of the first. On average the networks show
10% weaker innovative activity in the last period than in the first,11 showing
that innovation decreases on average. The relative standard deviation is
only 48% in this respect which points to the fact that on average we can
seriously speak about decreasing innovation.

To sum up, our analysis of the dynamics of innovation reveals interesting
results. First, it seems that innovation decreases in the majority of our
experiments, although this decrease is only a slight one. On the other hand,
a remarkable portion of cases show increasing innovativeness through time.

The effect of model parameters on innovation

It is interesting to see if the parameters of the model are able to explain
if innovation increases or decreases through time. In order to answer this
question we carried out a structured regression analysis. First a binary
logistic regression model was built in order to evaluate the effect of different
model parameters on the probability of observing increasing innovation.
Then, a standard linear regression model was built up for the two subgroups
(those observations in which innovation increases or decreases over time) in
order to analyse the effects of model parameters on the extent of increase
or decrease in innovativeness. The results of the regression analyses are
presented in Table 4.

The results are interesting. First, only pe, δ and ρ have significant effect
on the probability of increasing innovation. However, the explanatory
power of this model is very low, which is also reflected by its capacity
of prediction: there is a huge bias towards decreasing innovation. Whilst
the model correctly forecasts decreasing innovation, only 3% of the cases
when innovation increased were classified properly. These values warn us
to be cautious with the results. It seems that model parameters have no
clear effects on the probability of getting increasing innovation over time.

Given that innovation increases or decreases over time (the third and
fourth column of Table 4, respectively) the effects of different parameters
are as follows. The effect of N is of opposite direction depending on the
evolution of innovation. If we consider networks with increasing innovation

11This means that in the last period the number of innovations were 90% compared to that
of the first period on average.
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Parameter Effect on the
probability of

increasing
innovation

Effect on average
change in innovation

if innovation
increases over time

Effect on average
change in innovation

if innovation
decreases over time

N 0,002 0,256∗∗ -0,428∗∗

w -0,008 0,104 -0,051
kmax -0,028 -0,440∗∗ 0,259∗∗

pe -1,712∗∗ 0,267∗∗ -0,250∗∗

p0 -6,12 0,118 -0,038
δ 0,067∗∗ 0,165 -0,086∗∗

ρ -0,099∗∗ -0,088 -0,145∗∗

R2 0,127 0,376 0,335

Table 4: Regression results for innovation. In the case of linear regressions (columns 3 and
4) standardized coefficients are presented. ∗∗ means significance at the 0.01 level, ∗ means
significance at the 0.05 level.

(column 3) the effect of the number of companies is positive, whilst in
the case of decreasing innovation (column 4) its effect is negative. This
result is intertesting if we compare it to standard interpretations in cluster
literature. There we can find the argument that more companies lead to
more intense competition which in turn results in more innovation (see
Porter, 1990 for instance). This argument is detected in our model in
the types of networks where innovation increases over time. However, the
same is not true when innovation follows a decreasing trend. In this case
more companies lead to a more intense decrease in innovation over time.
On the other hand, our results show that increasing possibility of alliance
formation (increasing number of companies) do not neccesarily lead to
more innovation in this setting. Innovativeness is also influenced by the
knowledge setting of the industry as a whole.

The effects of kmax and pe show the role of this knowledge setting. Given
w, kmax gives the initial size of the knowledge space whilst pe affects the
overlap among companies’ initial knowledge portfolios. The two effects are
of opposite direction: increasing kmax increases average distance among
companies (given all other parameters), whilst increasing pe decreases
average distance among companies (given all other parameters). Regarding
these considerations the results in Table 4 show that a higher average
distance at the outset (i.e. high kmax together with a low pe) leads to a low
average change in innovation in absolute value. In other words, the effect
of initial average distance (knowlegde heterogeneity) is different whether
innovation increases or decreases over time. If innovation increases over
time, higher average distance lowers the pace of increase. If innovation
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decreases over time, higher average distance lowers the pace of decrease.
This result points to our assumption of optimal cognitive distance. It
seems that industries being close to this optimal distance on average at
the beginning show little change in innovation in either direction. On
the contrary, if average distance is far from the optimal, the change in
innovation is higher, but its direction is not determined by the value of
average distance.

This finding is important from the perspective of culster evolution:
essentially the same initial conditions can lead to different outcomes
regarding long term evolution. Whether innovation increases or decreases
over time seems to be determined by chance in our model (see our previous
analysis of the logistic model of innovation). Given this direction a small
average distance among companies at the outset can lead to maintained
innovativeness or declining innovation.

The effects of δ and ρ are also interesting. They seem to have some
effect on the overall direction of innovation, while no effect if innovation
increases but negative effects if it decreases. This asymmetry may come
from the fact that the sample of increasing innovation is not large enough
to generate significant results. If innovation decreases, this negative effect
of δ and ρ is quite easy to interpret. Higher values of δ require larger
distances in knowledge space for innovation to be maintained. If average
distance decrease on average (as it does – see section 4.1.3.) this means
that companies are farther away from optimal cognitive distance thus
innovation decreases. A smaller value of ρ generates a smaller interval
around δ suitable for partnership, thus it leads to reduced innovation.

As a final remark on innovation, although on average a slight decrease
in innovation is present in the model, the increase of innovation is also
possible. Which case occours seems to be explained by model parameters
only to a limited extent. Regarding the effect of model parameters on
the change in innovation over time our results revealed interesting points,
mainly that the number of companies have negative effects on innovation
while the average distance among companies at the outset have different
effects depending on increasing or decreasing innovativeness in the industry.
Nevertheless, caution is required when interpreting these results, because
the explanatory power of the regression models are very low. This points
to the fact that chance is an important driver of innovation in our model.
However, we must add, that by chance we mean the randomn modelling
methods used in our setting. It refers to all those factors which affect
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innovation but not modelled here explicitely. That is, chance does not
neccesarily mean that innovation comes from the ’air’.

4.1.2. Clustering

In what follows, we apply exactly the same methodology used for
innovation to analyse the evolution of clustering (network structure) over
time. In those 869 runs where an initially not empty network evolved over
time we calculated the average change in the clustering coefficient. This
shows a slight decline with a mean of -0,00012, and standard deviation
0,000438 which results in 350% relative standard deviation.12 If we take
a look at the historgram in Figure 2 it becomes obvious that we can not
convincingly state that clustering decreases over time. The majority of
cases (569 out of 869) is found between -0,0001 and 0,0001. However, more
than half of them lie in the negative range. Considering relative change in
clustering we found that in the last period the clustering coefficient is only
95% that of the first period with a standard deviation of 37 percentage
points, which also show a very slight and not too significant decrease.

Figure 2: The distribution of average change in clustering.

The effect of model parameters on clustering

Following the same methodology as in the previous subsection, we tried
to trace the role of different model parameters in the evolution of the
clustering coefficient. The results are presented in Table 5. The only

12Note, that a small absolute value in average change is not surprising in itself, as the clustering
coefficient is between 0 and 1.
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difference is that networks are again differentiated along the evolution of
innovation and not clustering. This is due to comparability between results.

Parameter Effect on the
probability of

increasing
innovation

Effect on clustering
if innovation

increases over time

Effect on clustering
if innovation

decreases over time

N 0,006 -0,034 0,215∗∗

w -0,001 -0,029 -0,039
kmax -0,019 -0,435∗∗ -0,083∗∗

pe -0,234 0,286∗∗ 0,065∗

p0 2,107∗∗ 0,182∗ 0,386
δ 0,034 0,097 0,060
ρ -0,091∗∗ 0,008 0,046
R2 0,130 0,276 0,212

Table 5: Regression results for clustering. In the case of linear regressions (columns 3 and
4) standardized coefficients are presented. ∗∗ means significance at the 0.01 level, ∗ means
significance at the 0.05 level.

With regard to increasing or decreasing clustering only two parameters are
found to significantly affect the direction of the change. p0 stands for the
probability of separate innovation and indirectly affects joint innovation
also. Its positive effect shows that a higher probability of innovation in the
industry, leaving all other parameters constant, increases the probability
for clustering to increase over time. This is an interesting finding as here
we have some solid base for reflection: the probability of innovation is
given at the outset, and so, if we accept the results from the regression,
increasing clustering can be detected as being caused by higher innovation
probability, or, as it is frequently interpreted, greater efficiency in R&D
activity. This is an important finding as it points to the fact that it is
possible that higher clustering is caused by more dense innovative activity
and not vica versa as it is frequently claimed.

The other parameter to affect clustering is ρ, that is, the suitable interval
for joint innovative activity around optimal cognitive distance. Its negative
effect is somewhat interesting, but there is a clear way to interpret
it. It is interesting, because one would expect a higher ρ to increase
clustering as higher ρ makes more links profitable and thus more link
forms and clsutering increases. However, this reasoning leaves aside one
important aspect of clustering, namely that it measures local linkages in
contrast to overall linkages in the network. Clustering increases if local
neighbourhoods are getting denser. Taking a reverse perspective, if ρ
decreases, it is less suitable for companies to form pairs on average, but
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those companies who are close to each other in the knowledge space (who
are relatively similar), it is still profitable to form alliances. Thus a lower
ρ results in less links but these links will be concentrated in the knowledge
space among companies who are close to each other. Local linkages thus
gain more weight compared to more ’global’ links.

Looking at the effect of model parameters on clustering (differentiating
again between increasing and decreasing innovation) we see basically
similar results, alhough there are some remarkable differences. First,
industry size (N) only affects clustering in the case of decreasing
innovation. If a network shows declining innovation, more companies lead
to higher change in clustering: clustering increases more or decreases less
intensely. This is not true in the case of increasing innovation. If innovation
increases, industry size has no effect on clustering. The effect of the
initial knowledge space (kmax and pe) on clustering is more interesting.
It seems that there is no ambiguity in this respect in contrast to the
case of innovation. Independent of the overall direction of innovation, the
more dense is the initial knowledge space (higher pe and lower kmax), the
higher is the average change in clustering. This points to the conclusion
that clustering does not follow a linear trend in our model. Given
that companies are cognitively close to each other at the beginning, a
more clustered network is likely to emerge initially. A decreasing trend
in clustering results in a slight decrease when clustering is high at the
beginning whilst a more robust decline when clustering is lower: the trend
of clustering follows a logistic pattern. There is no difference between cases
when innovation increases or decreases over time.

There is another parameter, p0, which affects the average change in
clustering. The interpretation is quite clear. A higher probability of joint
innovation makes it more profitable to form alliances (given the costs of
alliances, c). This results in more links, either local or global, and so
clustering increases over time.

A few notes on normalised clustering

It is impotrant to look at the evolution of the clustering coefficient itself,
however, it is also interesting to pose the question whether a higher
clustering coefficient really means that network structure becomes more
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local.13 It would be neccesary to normalise somehow the clustering
coefficient to capture this relative aspect of local link formation. As the
clustering coefficient is basically a density measure (it counts the number of
local links relative to possible local links) it is straightforward to use global
density as a benchmark. If we divide the clustering coefficient by network
density we get a measure of the locality of the networks: if it is greater
than one, local density (clustering coefficient) is higher than overall density
meaning that links tend to be local in the sense of the network space.14

If we use this method to refer to the localised character of the networks
under consideration, we get an interesting result. In those 869 cases which
we have considered so far, this ratio is significantly greater than one. This
means that in our experiments networks were more dense locally than
gobally, i.e. we have an overall clustered network structure. This is not
that interesting in itself, as all networks in our sample have the same
property on average. However, if we look at the evolution of this ratio, we
find that it is increasing over time in 85% of the cases considered. Thus
we can draw the conclusion that although the clustering coefficient reports
a slightly decreasing trend in the coefficient, the structure of our networks
become more local. This result is explained by the fact that on average the
number of links decrease during our experiments. This leads to a decrease
in clustering as this measure is highly correlated with link number. On
the other hand, local links (links in neighborhoods) decrease at a slower
pace than more distant links. This leads to the observed phenomenon of
increasing locality in the networks.

Our results point to the fact that clustering coefficient is not always a
good measure of the local structure of a network. In our experiments
locality increases in spite of a decreasing clustering coefficient. However, it
must be noted that the standard deviation of average decrease in locality
is very high again, thus the detected increase in this respect is, although
statistically significant, quite small.

4.1.3. Heterogeneity

Finally, we take a look at how heterogeneity evolved over time in our
experimental networks. Essentially the same methods were used as before
in the case of innovation and clustering. On average the change in

13The reason is that higher clustering coefficient can be a result of more links in the network
in general which obviously leads to more links in local neighborhoods.

14See the derivation in the Appendix.

21



normalised average distance15 was -0,00066, and so a decrease is again
detected in this respect. The small absolute value is due to the fact that
normalised average distance must lie between 0 and 1.16 However, now the
standard deviation is 0,00041 which results in a relative standard deviation
of 61%. This is much lower than the similar values of innovation and
clustering which shows that here we can talk about a remarkable downward
trend in normalised distance, i.e. heterogeneity. Again, hypothese testing
shows that this average change is significantly different from zero. With
respect to relative change we found that in the last period the value of
normalised distance was only 53% that of the first period. Using this value
as a reference we can say that in the last period companies were slightly
more than half as heterogeneous as before: industries in our experiments
tend towards homogeneity. The usual histogram is presented in Figure 3.
It can be seen that now the distribution is close to normal. There is only
32 cases where heterogeneity increases, being rather an exception than a
rule.

Figure 3: The distribution of average change in heterogeneity.

This shows that heterogeneity clearly falls in our model over time, that
is, companies become more similar. This is due to their joint innovative
activity which results in more homogeneous knowledge portfolios. This
result is in line with those thoughts mentioned in the Introduction.
However, there are two important extensions to previous studies based
on our analysis. First, in our model the loss of heterogeneity can be
consistent with increasing innovativeness as we can not detect co-evolution
in heterogeneity and innovation (see section 4.2. for details). Second, there
seems to be a reinforcement of the studies on social capital theory which

15See the Appendix for details.
16And the experiments show that with the exception of really few cases it is lower than 0,5.
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argue that external refreshment is required for maintaining heterogeneity
in a given group (e.g. Coleman, 1990; Putnam et al., 1993, Granovetter,
1973). Our model gives an example of a closed group of innovators who are
not exposed to this kind of external shocks. It is clearly shown that this
setting leads to a loss of heterogeneity. However, in our model innovation
can increase in spite of decreasing heterogeneity which is one of the most
important results here.

The effect of model parameters on heterogeneity

We conducted a similar analysis for model parameters as before. The
results are presented in Table 6. Again, the different cases were classified
in column 3 and 4 with respect to the evolution of innovation, in order to
have a benchmark among the analyses.

Parameter Effect on the
probability of

increasing
innovation

Effect on
heterogeneity if

innovation increases
over time

Effect on
heterogeneity if

innovation decreases
over time

N -0,043∗∗ -0,091 -0,224∗∗

w -0,062 0,071 0,184∗∗

kmax 0,024 0,467∗∗ 0,499∗∗

pe -12,387∗∗ -0,439∗∗ -0,246∗∗

p0 13,512∗∗ -0,464∗∗ -0,477
δ 0,017 -0,023 -0,034
ρ -0,062 0,109 0,037
R2 0,671 0,649 0,599

Table 6: Regression results for heterogeneity. In the case of linear regressions (columns 3 and
4) standardized coefficients are presented. ∗∗ means significance at the 0.01 level, ∗ means
significance at the 0.05 level.

With regards to the question of increasing or decreasing heterogeneity,
three model parameters are found to have significant effect. All three
decrease the probability of increasing heterogeneity, i.e. all parameters
act towards homogeneity. First, a more dense industry with respect
to the number of companies lead to decreasing heterogeneity with a
greater probability. The reason for this can be found in our definition
of heterogeneity. Given the size of knowledge space (kmax and w) more
companies lead to lower average distances at the outset.17 Thus, a more
dense industry is associated with more homogeneity in the beginning
therefore there is less room for a further decrease. Fewer companies,

17Recall that companies are randomly distributed at the beginning.
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on the other hand, leave more space for further decrease in homogeneity.
Second, pe has a negative effect on the probability if heterogeneity increases
over time. This parameter affects the average distance of companies in
the initial knowledge space and so its effect can be explained along the
same arguments as that of N . Third, the effect of p0 shows that a higher
probability of innovation leads to less heterogenous networks. The reason
behind this result is less technical than that of the other two parameters.
Increasing p0 leads to more links (as more links become profitable).
Through more links companies interact more and their knowledge base is
more likely to converge thus converting them more homogenous. However,
we must note that in the present setting there is no learning included in
the model. Companies become more similar only through joint innovation.

If we look at the effect of parameters on the value of average change
in heterogeneity it is clear that the cases of increasing and decreasing
innovation is basically the same. Parameters kmax, pe and p0 have the
same effect regardless of the direction of innovative activity. kmax and pe,
as was discussed previously, define the initial level of heterogeneity in the
industry. The signs of the respective coefficients show that an initially more
heterogeneous industry (higher kmax and lower pe) is likely to lose less from
its heterogeneity than an initially more homogeneous one.18 This result can
be interpreted in two different ways. First, it can reveal a logistic shape
of the evolution of heterogeneity: slight decrease at the beginning (with
higher levels of initial heterogeneity) while larger decrease at the end (from
lower values of initial heterogeneity). Second, and more importantly, this
points to the fact that, although convergence is not ruled out in this model,
there is an inherent inertia in the evolution of heterogeneity. Initially more
heterogeneous industries are more likely to maintain their diversity whilst
more homogeneous ones tend to homogeneity more rapidly. This reveals
the typical path-dependence in cluster evolution discussed widely in the
literature. If the industry attains a high level of heterogeneity, it is easier
to maintain it as forces towards homogeneity are less strong. How this
level of heterogeneity is achieved, however, is not modelled in our context.
Initial knowledge portfolios are given at the outset.

The positive effect of w can be interpreted similarly to kmax as this
parameter also increases heterogeneity in the initial knowledge space.
However, its effect is clear only in the case of increasing innovation. The

18Here we took the overall declining trend in heterogeneity as given. In this case the
interpretation of a positive sign in kmax for example is that the decrease is smaller if kmax

gets higher.
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effect of N is negative and only detectable in the case of decreasing
innovation. More companies lead to larger decline in heterogeneity given
that innovation decreases over time.

4.1.4. Conlcuding remarks on model parameters

So far we have analysed the effects of model parameters on the evolution of
different output measures in detail. Although their effect provides precious
insights into the inherent processes of our model, the relevance of these
findings should not be overemphasised. If we look at the explanatory power
of these regression models, it is clear that, although model coefficients are
found significant, the evolution of different output measures are not always
explained well by the values of model parameters. This is true for both
the logistic and the linear regression models presented above. The only
exception is heterogeneity, where R2s are at an acceptable level. This
result, however can not be seen as a drawback of our analysis. The small
explanatory powers are consistent with the overall evolution of the different
output variables. Innovation and clustering decrease only very slightly on
average. A regression model which tries to trace out the role of different
effects in this trend can not be succesful in such a situation. In the case of
heterogeneity the picture is more favorable but again, this is in line with
the finding that the overall decline in heterogeneity is much stronger.

These arguments let us conclude that in the case of innovation and
clustering we can not convincingly state that these measures decrease over
time. It is more convenient to say that these values are quite stable with
a greater probability of decrease than of increase. On the other hand,
heterogeneity is clearly decreasing, so in our model networks tend towards
homogeneity with regard the knowledge portfolios of the companies.

4.2. The co-evolution of network characteristics

In the analysis so far, we have discussed the dynamic behavior of the
three output measures and tried to trace out the effect of different model
parameters on this evolution. In what follows, we consider the co-evolution
of different output measures to find out if there is a correlation among
different characteristics of our model industry. We do this in two aspects.
First we look only at the binary variables of increasing or decreasing
innovation/clustering/heterogeneity. This analysis can detect if there is
a basic correlation among output variables. For example, does innovation
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increase if heterogeneity increases? Second, we consider the correlation
among average changes in the three output measures. Do a higher
average change in innovation correspond to a higher average change in
heterogeneity?

In Table 7 the correlation coefficients are presented with respect to our
first aspect, i.e. the correlation among increasing and decreasing output
measures. As a point of reference we included our locality measure in the
analysis also.

Innovation Clustering Heterogeneity Locality

Innovation 1,000 0,170∗∗ 0,116∗∗ -0,267∗∗

Clustering 0,170 1,000 -0,046 0,165∗∗

Heterogeneity 0,116∗∗ -0,046 1,000 -0,177∗∗

Locality -0,267∗∗ 0,165∗∗ -0,177∗∗ 1,000

Table 7: Correlation coefficients of binaries showing the overall direction of change in output
parameters.

The results are not at all convincing. Although significant relationships
are detected, the value of the correlation coefficient is always under 0,3.
A deeper analysis (directly counting co-occurences of 0s and 1s in this
database) suggest the same conclusion. The significance of the results stem
from the fact that vast majority of the experiments show similar patterns in
the output measures (decreasing innovation, clustering and heterogeneity).
This, in turn, causes many similar counts on one side but there is a missing
relation on the other. For instance, taking innovation and clustering there
are only 32 cases when innovation and clustering both increase over time
whilst innovation increases 104 times and clustering 126 times. At the
same time there are 671 cases when both measures decrease over time.
The same is true for all pairs of output variables.

This leaves us with the conclusion that no robust co-evolution can be
detected regarding the overall direction of output measures. This is
substantially important in the case of innovation and clustering as well
as innovation and heterogeneity. We cannot state in either case that the
two output measures evolve in correspondance. While clustering decreases
innovation can increase and decrease as well. And while heterogeneity
basically decreases, innovation can increase and decrease also. Although
these results seem unsatisfying at the first sight, they reveal important
characteristics of our model. In our model the different output measures
are not deterministically correlated. Although heterogeneity really seems
to decline over time resulting in more homogeneous industries, this does not
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lead to less innovation per se: innovation can increase in those industries
where companies become homogeneous over time.

Taking a final look on locality, essentially the same picture emerges.
Irrespective of the overall direction in locality, innovation can increase or
decrease over time. However, looking at the corelation between locality
and clustering our argument that the two measures are basically different
can be proved again. Higher clustering is not neccesarily followed by higher
locality and vice versa.

The picture revealed previously changes somewhat if we do not correlate
binaries but average changes in the different output measures. The results
are presented in Table 8.

Innovation Clustering Heterogeneity Locality

Innovation 1,000 -0,051 0,428∗∗ -0,014
Clustering 0,051 1,000 -0,325∗∗ 0,399∗∗

Heterogeneity 0,428∗∗ -0,325∗∗ 1,000 -0,054
Locality -0,014 0,399∗∗ -0,054 1,000

Table 8: Correlation coefficients between average changes in output variables. All cases included.

What is clear, that significant relationships become rather more robust in
this case, although they are all below 0,5 in this case also. Altogether three
significant relations can be detected. First, innovation and heterogeneity
has a positive correlation. This is not surprising as not innovation and
heterogeneity per se are correlated here, but their change over time. If we
consider the decreasing trend in the two measures this correlation means
that a smaller decrease in heterogeneity corresponds to a smaller decrease
in innovation. That is, in those industries where heterogeneity declines
at a lower pace, innovation also declines at a lower pace – or it may
increase also. In industries where heterogeneity increases, innovation may
not decrease but increase - however this last statement is not proved by our
previous analysis of binary variables. Thus in our model, at least at the
level of average change in output measures, heterogeneity seems to foster
innovation. It is not clear however, which causes which. Larger decreases
in innovation can lead to larger decreases in heterogeneity also.

Second, clustering is negatively correlated with heterogeneity. A larger
decrease in heterogeneity corresponds to a smaller decrease in clustering.
This result is very interesting and again emphasises the basic difference
between clustering and locality: in spite of the correlation with clustering,
there is no significant correlation between heterogeneity and locality. Our
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third significant relation is that of clustering and locality: this is positive
and shows that a higher change in clustering corrpesponds to a higher
change in locality. This result is embarassing as clustering decreases on
average whilst locality increases on average. This contradiction can be
resolved by the definition of our locality measure. Locality is defined
as the ratio of the clustering coefficient and network density. As both
clustering and density declines over time (because fewer links are formed
in the networks) it is obvious that density decreases at a higher rate than
clustering. Given a rate of decrease in density, the smallest is the decline in
clustering, the highest is the increase in locality, which is what the results
tell us.

We should stress that these results are still not too convincing. They can be
interpreted as a slight co-evolution of output variables in the three cases
underlined above. Things become more clear, however, if we make our
usual distinction between increasing and decreasing innovation, i.e. if we
treat separately the cases when innovation increases or decreases over time
in our experiments. Table 9 and 10 present the respective data.

Innovation Clustering Heterogeneity Locality

Innovation 1,000 -0,428∗∗ -0,567∗∗ 0,205∗

Clustering 0,428∗∗ 1,000 -0,565∗∗ 0,419∗∗

Heterogeneity -0,567∗∗ -0,565∗∗ 1,000 -0,208∗

Locality -0,205∗ 0,419∗∗ -0,208∗ 1,000

Table 9: Correlation coefficients between average changes in output variables. Cases with
increasing innovation are included.

What is obvious that the relationships become more robust in all cases.
On the other hand, the directions are basically the same as before, with
two differences. First, whilst innovation and heterogeneity are positively
correlated if innovation decreases over time, the two variables are negatively
correlated if innovation increases over time. This last result modifies our
earlier finding. There we concluded that a larger decrease in heterogeneity
leads to a larger decrease in innovation. This is still true, but if we treat
those cases where innovation increases separately, we find the opposite
results. Given that innovation increases over time, a higher change in
innovation corresponds to a smaller change in heterogeneity. In those
industries where innovation increases, this increase is larger if heterogeneity
decreases more (given that heterogeneity is typically decreasing over
time). This again points to interesting coclusions. Whilst innovation can
increase if heterogeneity decrease in our model, a higher pace of innovation
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correpsonds to a higher decrease in heterogeneity, i.e. more homogeneous
companies.

The second difference is that although more significant relationships occur,
these are characterised by a small correlation coefficient, therefore we
cannot treat them as real correlations. There is one exception: the
correlation between innovation and clustering if innovation increases over
time. This means that a higher increase in innovation corresponds to a
higher level of innovation, and so the basic argument in the literature that
dense local relationships are favourable for innovation can be detected here,
although this relationship is valid only if innovation increases over time.

Innovation Clustering Heterogeneity Locality

Innovation 1,000 -0,160∗∗ -0,458∗∗ -0,026
Clustering -0,160∗∗ 1,000 -0,309∗∗ 0,423∗∗

Heterogeneity 0,458∗∗ -0,309∗∗ 1,000 -0,037
Locality -0,026 0,423∗∗ -0,037 1,000

Table 10: Correlation coefficients between average changes in output variables. Cases with
decreasing innovation are included.

Regardig our results it is still important to note that the correlation values
are still under 0,5 and that no causal relationships can be detected. These
correlations show only co-evolution and not the direction of effects.

4.3. Dynamics with learning

In the experiments presented above companies did not learn from each
other, but innovated in those areas where both partners had competence.
However, it is hardly reasonable to assume that companies do not learn
from each other when they work together in alliances. In what follows, we
introduce learning into or model and present basic results of simulations
under the assumption of learning. However, it seems that the introduction
of learning does not change our results but makes the observed relationships
stroger.

In order to examine the implication of learning in our model, we proceed in
two ways. The two approaches are distinctive on how learning occurs: we
can assume that successful innovation is required for learning something
new, and also that it is possible that it is not required. We refer to the first
case as ’learning through innovation’ and to the second as ’autonomous
learning’. Regarding our model presented previously, learning can be
handled in two different ways again. First, it can be seen as ’catching
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up’ with allies, i.e. if there is a difference in knowledge levels at the field
selected for innovation, the lagging company can catch up with the leader.
In this case, however, the knowledge portfolios of companies do not become
wider (no new areas are incorporated), they are fixed to the portfolio
determined at the outset. Second, leraning can be seen as integrating new
knowledge fields into the knowledge portfolio of a company. This means
that joint innovation is not restricted to those fields where both companies
have competence, but they can innovate in the union of fields belonging
to either companies’ knowledge portfolio.19 This altogether defines four
different types of learning, although our results show that there is no basic
difference between them, so we do not treat them separately.

If we look at the descriptive statistics on the basic characteristics of the
emerging networks, we see a very similar picture as presented in Table
3. The numbers are slightly different but this can not be regarded as
systematic: they are due to chance inherent in our model. 87% of the
experiments show evolving networks from initially not empty ones, and
there is no such case where an initially not empty network remained stable
over time. A slight difference is present in the cases where industries start
from an empty network. 62% of our experiments remained empty in this
respect, compared to the 56% in the no-learning experiments, whilst in 68%
of the cases a cluster emerged from an empty network over time, in contrast
to the 75% in the no learning cases. This difference is very small in order
to conlcude that learning creates a less favourable environment for the
emergence of clusters – which would, however, be quite counterintuitive.

Now we turn to the characteristics of the different output measures. The
basic trends are similar to those of the no learning case. Innovation
decreases in most of the experiments, but the average decrease is somewhat
larger. On the other hand, clustering also decreases, but the average
decrease is much smaller in absolute value: the slight downward trend in
clustering becomes nearly unvisible if learning is incorporated (regardless of
the type of learning). Heterogeneity also decreases among companies, but
the average decrease is a little larger than in the no learning case. These
results can be interpreted easily. Learning leads to homogeneity more

19Note, that technically we can not distinguish between innovation and learning in our model.
Learning means that a company have new knowledge which is the same as innovation. The
difference is that learning means new knowledge only to the company itself. (On the other
hand, innovation is not neccesarily new to the industry as a whole: alliances may innovate
something which is already known by others.) Innovation is surely new to the given allies but
it is not neccesarily new to the industry.
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rapdily and so companies leave the optimal interval for joint innovation
(they become too homogeneous) more rapidly also. This results in a higher
rate of decrease in innovation on average.

Our result on the disappearing decrease in clustering is interesting. This
finding is underlined by the behavior of locality. If learning is incorporated
into the model, the increase in the locality of the network becomes
significantly higher. This is in line with the (nearly stagnating) clustering
coefficient, but reveals that the structure of networks become more localised
over time. This reveals an important relationship between learning and
localisation (clustering). It is argued by others (see Cowan, 2006, for
instance) that a more clustered network is favourable for learning through
intense local relationships. In our setting, the reasoning goes the other
direction: learning leads to more localised structures in networks. The two
arguments are, however, not contradictory, but refer to a self-sustaining
dynamic process: learning leads to the emergence of localised network
structures, which again reinforces learning. That is, we can complement
the static view between network structure and learning with a dynamic,
positive feedback rule.

Our experiments with learning included in the model shows that its basic
properties do not change. The overall decreasing trend in innovation is
slightly strengthened which is due to the effect of learning in leading to
homogeneity more rapidly. However, the decline in clustering and locality
is not present which reveals a positive dynamic contribution of learning to
the emergence of local structures. If we take these two findings in contrast,
our model clearly shows that in such dynamic networks, either learning or
innovation dominate. Learning can lead to more localised structures which
reinforce learning, but at the same time the network loses its innovative
potential. If learning is not present, innovation is more sustainable and
networks show a less localised picture.

4.4. Cluster emergence

We have mentioned previously that a portion of our simulation runs
produced clusters emerging from ’nowhere’, that is the parameters of the
model generated an empty network (no links formed at the beginning),
but due to the seperate innovative processes of the companies knowledge
portfolios evolved such a way that some links eventually became profitable
to form. From that point on these networks remained ’not empty’, i.e. at
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least some links were present in every period. It would be interesting to
see if the parameters of the model have an influence on the emergence of
networks. In order to analyze this aspect, we took those runs in which
the networks were empty at the beginning and differentiated among stable
and evolving ones. A binary logistic regression was carried out to see if the
different parameters have significant effects on the emergence of clusters.
The results of this regression analysis can be seen in Table 11.

Parameter B

N 0,042
w -0,176
kmax -0,138
pe -0,380
p0 1,074
δ 0,412∗∗

ρ 0,091

Table 11: Binary logistic regression results for the effect of model parameters on cluster
emergence. ∗∗ means significance at the 0.01 level, ∗ means significance at the 0.05 level.

The results reveal that there is only one parameter, δ which has significant
effect whether a cluster emerges or not from an initially empty network.
This parameter defines the ’optimal cognitive distance’ for joint innovation,
i.e. that level of similarity/dissimilarity among companies (regarding
knowledge) which is the most favourable for joint innovation. The positive
effect of δ on the emergence of clusters means that if a higher cognitive
distance is optimal for joint innovation, it is more likely that a network
will be established among industry companies. Higher optimal distance
in turn corresponds with higher optimal diversity. Thus, we can conclude
that higher heterogeneity is favourable for cluster emergence which is in line
with some previous studies (e.g. Karlsson, 2008). An interesting extension
of the present study would be to focus on the emergence of clusters based
on the knowledge properties of the industry.

5. Innovation and heterogeneity

Many aspects of our model have been analysed, although our basic question
about innovation and heterogeneity remains to be summarised. As it was
mentioned in the Introduction, different studies tell us different stories
about the relationship between these two phenomena. In addition, our
analysis draws a rather mixed picture also. In order to clarify our
arguments it seems reasonable to introduce a basic typology of cluster
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evolution. This typology differentiates between clusters with respect to
the evolution of the heterogeneity of companies and that of the innovation
potential of the cluster: first, if companies become homogeneous or if there
is a maintained heterogeneity in the cluster and second, if innovation is
sustained or it is decreasing through time. With two classes along both
dimensions we can distinguish among four types of cluster-evolution, as
presented in Table 12.

Sustainable
Innovation

Decreasing
Innovation

Persistent
Heterogeneity

Dynamic cluster
Knott (2004)

Fragmented cluster
?

Decreasing
Heterogeneity

Specialised cluster
This model

Declining cluster
Cowan&Jonard (2007),
this model

Table 12: Typology of cluster evolution regarding heterogeneity and innovation.

• The first category can be labelled as ’dynamic’, showing both
sustainable innovation and persistent heterogeneity. These kinds of
cluster are typically based on urbanisation or Jacobs’ externalities
(Jacobs, 1969) where innovative potential stems from heterogeneity
itself. The model of Knott (2003) fits this type.

• The opposite category is that of decreasing heterogeneity (companies
becoming homogenous) and decreasing innovation. This type may be
named ’declining’ and the model of Cowan and Jonard (2007) fits
to this one. Our model presented in this paper also contains the
possibility of this type.

• We shall term ’fragmented’ those clusters where companies remain
heterogeneous but innovation decreases over time. Although we have
not found examples for this type in the literature, it is not theoretically
impossible.

• The fourth version is the case of decreasing heterogeneity and
sustainable innovation, which could be labelled as ’specialised’ cluster.
Our model also contains this type of cluster.

This typology clearly shows that there is no one simple model of cluster
evolution, rather different paths can be detected. Which type are relevant
to a special case depends on different factors. Our analysis shows that
the initial setting of the knowledge space in the industry can be a relevant
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factor, however pure chance can also be important. Other studies imply
that different types of cluster evolution exist in different phases of the
cluster life cycle (e.g. Menzel and Fornahl, 2007).

Our model presents a simple example of the possibility of increasing and
decreasing innovative potential, whilst companies in the industry become
more heterogenous. This points to the complex mechanisms hiding behind
cluster evolution. On the other hand it is straightforward to cite the
obvious connection with different types of externalities discussed in the
literature on the economics of agglomeration. Localisation economies
refer to those effects which makes co-location advantageous for similar
companies. In this case similar knowledge bases drive the agglomeration
process: companies can easily communicate with each other as they are
all specialised in the same technological fields (Johansson and Forslund,
2008; Weterings and Boschma, 2006). On the other hand, urbanisation
economies (also referred to as Jacobs externalities) are quite different.
In this case not similarity, but heterogeneity is the main force which
drives economic agglomeration. Jacobs (1969) argues that large cities
are attractive places for innovative activities because of the heterogeneous
community which serves as an unfailing source of new ideas and associative
innovations. On the basis of these urbanisation economies, companies feel
it advantageous to co-locate with other companies not because of the ease
of knowledge transfer but because of the highly vibrant atmosphere which
provides extraordinary possibilities for innovation.

In this paper we proposed a model which proves that basically similar
mechanisms can lead to both types of agglomerations or clusters. Which
type of externalities prevail depends on the initial characteristics of the
knowledge space and on chance. The model also reveals that path-
dependence is an important factor in cluster evolution: either type
of evoutionary path emerges at the beginnig, previous developments
determine future paths.

On the other hand, our model does not deal with the possibility of
increasing or maintained heterogeneity – which is an obvious drawback.
Several empirical studies emphasise the presence of this type of clusters
(Molina-Morales and Mart́ınez-Fernández, 2004). One defensive point
according to this consideration can be that, by including learning into
our model, we can distinguish between higher and lower decrease in
heterogeneity, admitting that this approach is far from maintained or even
increasing heterogeneity.
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6. Discussion and conclusions

In this paper we presented a simple model of network evolution based
on knowledge sharing and innovation. The analysis of simualtion results
revealed interesting insights into the working of the model and the evolution
of knowledge networks, as detailed in the sections above. In what follows,
we briefly discuss the most important findings and draw conclusions about
them.

During our simulations, the evolution of three main characteristics of
the newtorks were recorded: innovativeness, clustering (locality) and
heterogeneity. First, we found that heterogeneity is decreasing over time
in our model, i.e. companies become more homogeneous, which is due to
innovation as their knowledge bases converge during innovative activity.
Second, this decrease in heterogeneity does not correspond to declining
innovativeness as it is frequently argued in the literature. Besides tending
towards homogeneity some experiments show increasing innovativeness
which points to the conclusion that innovativeness is not linked to the
heterogeneity of knowledge bases of companies. In our cluster typology
this model presents both the ’specialised’ and the declining’ cluster’: a
decrease in heterogeneity can accomodate both increasing and decreasin
innovativeness. Third, we find that the clustering coefficient is quite
stable over time with a minor decrease on average, although our special
measure of locality reveals that networks become more locally structured
as time passes, meaning that local links dominate global links.20 This
is, again, an important finding as it shows i) that locality in network
structure can not be fully measured by the clustering coefficient and
ii) that increasing local density in network structure can be reconciled
with increasing and also decreasing innovativeness. Fourth, the mutual
decrease in heterogeneity and increase in locality strengthens our view on
the standardising forces of strong local linkages. However, as opposed to
several studies (e.g. Granovetter, 1973) in our model strong locality and
the resulting homogeneity do not neccesarily lead to a loss of innovativeness
although in the majority of the experiments this is the case.

A further important finding in our analysis is the presence of path
dependency. The initial setting of the knowledge space defines the path
of network evolution to a considerable degree. This feature can be
found in the case of clustering and heterogeneity also. If we consider

20By local here we mean geodetic locality as geogpraphy is not included in the model.
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the clustering coefficient, as described in section 4.1.2., an initially more
clustered networks remains relatively clustered in spite of the decreasing
trend in clustering, while initially less clustered networks show a more
intense decrease in clustering. Considering our relative locality measure
the same tendencies are present into the other direction (locality generally
increases in the experimental netwroks). We also found this feature in
the case of heterogeneity: initially more heterogeneous networks, although
tending towards homogeneity, lose relatively less of their heterogeneity than
initially more homogeneous networks. Thus, the evolution of networks in
our model reinforces initial differences in heterogeneity and clustering in
spite of the overall decreasing tendency of the two.

Although offers interesting insights into knowledge-based network
evolution, our model has its clear limitations. Although modelling
knowledge is said to be relatively sophisticated as both the dimensions
of breadth and depth are considered, our approach is still far from
perfect. First, our knowledge space is orthogonal which results in the
fact that all knowledge fields are equally different/similar. Therefore we
can not distinguish between closer and farther substitutability between
knowledge fields. Second, limiting innovation to one-unit steps upwards
on the knowledge ladder is also a major simplification. A straightforward
extension would be to allow for innovation to be proportional to the existing
knowledge stock of the company. One further limitation is the symmetry
of network formation. It is obvious that research alliances form only if
the alliance is benefitial for both partners. Our model is consistent with
this recognition. However, it is not neccesary that if a link is benefitial for
company A it would be benefitial for company B as well – which is the
case in our model. Incorporating this consideration into our model would
not essentially alter our results, only the average number of links would be
lower.

Furthermore, although listed in our typology in section 5, our model does
not generate networks with increasing heterogeneity. This is mainly due
to its closed structure: there are no outside shocks which could add new
knowledge fields to the existing ones. Although innovation can in principle
be infinite in the knowledge fields, the number of fields is fixed at the
outset for the industry. On the other hand, this shows i) the importance
of external effects in maintaining heterogeneity (though not neccesarily
innovativeness); ii) that adding such extarnal shocks to the model it could
be able to generate all four possible cluster types given in our typology.
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7. Appendix

7.1. Mathematical derivations

First we show that the expected value of innovation equals its probability,
p0. Calculate the value of the knowledge level for company n at time t as
follows:

V n(t) =
w∑

i=1
kn

i (t)

When evaluating the value of the innovation, consider the expected value
of company n’s knowledge base in the next period, which depends on the
expected value of the individual knowledge fields:

E [V n(t+ 1)] =
w∑

i=1
E [kn

i (t+ 1)]
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where E is the expected value operator. The expected knowledge level in
technological field i in the next period can be written as follows:

Ei [kn
i (t+ 1)] =

[
p0

(
1

wn
(kn

i (t) + 1) +
wn − 1

wn
kn

i (t)

)
+ (1− p0)k

n
i (t)

]
1kn

i >0

where 1kn
i >0 is the indicator function of kn

i > 0, and wn is the number of
technological fields in which company n is competent:

wn =
∑
i

1kn
i >0

Thus, the expected value of the knowledge base in period (t+ 1) is:

E [V n(t+ 1)] =
∑

i,kn
i (t)>0

p0

(
1

wn
(kn

i (t) + 1) +
wn − 1

wn
kn

i (t)

)
+(1−p0)k

n
i (t) =

=
p0

wn

wn ∑
i,kn

i (t)>0
kn

i (t) + wn

 + (1− p0)
∑

i,kn
i (t)>0

kn
i (t) =

∑
i

kn
i (t) + p0

where in the last equality we used the fact that
∑

i,kn
i (t)>0 k

n
i (t) =

∑
i k

n
i (t)

by definition. So we have a very simple form for the value of innovation
in this case. The value of innovation can be simply characterized by the
expected growth in the value of the knowledge base:

E [V n(t+ 1)]− V n(t) = p0

Not too surprisingly, this tells us that if innovation increases one of the
company’s existing knowledge type by 1 unit, and if innovation occours
with probability p0 than the expected value of this innovation is p0.

As carried out for the autharchic innovation above, the expected value
of innovation can be derived for tha case of joint innovation as well.
First, calculate the expected value of company n’s knowledge base in
period (t + 1) if it establishes an alliance with company m. The main
difference in contrast to the separate innovation is two-fold. First, the
porbability of successfull innovation now is pn,m. Second, innovation can
occour only in those knowledge fields, where both company n and company
m have competence. According to these, the expected value of company
n’s knowledge base in technological field i if it cooperates with company
m, is:
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Ei [kn
i (t+ 1)] =


pn,m

[
1

wnm (kn
i (t) + 1) + wnm−1

wnm kn
i (t)

]
+

+(1− pn,m)kn
i (t); ∀i, kn

i (t) > 0, km
i (t) > 0

kn
i (t) > 0; otherwise

where wnm is the number of technological fields in which both company n
and company m has competence:

wnm =
∑
i

1kn
i >0,km

i >0

From the above, by summing through i, we get the expected value of
company n’s knowledge base:

E [V n(t+ 1)] =
∑
i

kn
i (t) + pn,m

from which the value of joint innovation is:

E [V n(t+ 1)]− V n(t) = pn,m

Of course, this method does not take into consideration, that in several
cases companies do not have common technological fields. Instead of
building this into the formulae above, we simply rule out this possibility
by assuming that companies do not form alliances if they have no common
technological fields. In this case, the equations above are correct, as if
company n and company m do not have common fields, they do not
evaluate the value of their joint work, as it is apparently zero.

7.2. The measure of heterogeneity (normalised average
cognitive distance)

Let’s denote the Eucledian distance of company n and company m by dn,m

as defined in the model description. Then the average distance of company
n from all other companies in the knowledge space can be written as

d̄n =

∑
m dn,m

N − 1

Averaging over n gives the average cognitive distance in the whole industry:
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d̄ =

∑
n d̄n

N
=

∑
n
∑

m dn,m

N(N − 1)

However, this is not independent of the size of knowledge space. If
the knowledge space widens, average distance may (but not neccesarily)
increase as well. To rule this effect out first we calculate the diameter of
the knowledge space (as the largest possible distance between two points
in this space):

s =

√√√√ w∑
i=1

(kmax
i )2

where kmax
i is the technological frontier in technological field i which can

be different across fields and periods. To yield a normalised measure of
heterogeneity we relate average distance to the diameter, thus obtaining a
value between zero and one with zero desiganating a homogenous industry
with similar knowledge bases and one designating the most heterogeneous
industry with regards to cognitive distance:

AD =
d̄

s

7.3. The measure of locality (clustering coefficient and local
density)

The clustering coefficient refers to the extent to which neighbours of a
given agent in the network are neighbours to each other (Cowan, 2006).
Consider agent i in the network, its neighbourhod is Γi. The number of
possible links in this neighbourhood is ‖Γi‖ · (‖Γi‖ − 1)/2. If we have
exactly this number of links, then this subnetwork is totally clustered as
the neighbours of agent i are all neighbours to each other. If this is not
the case, we can count this deviation by summing the links among agent
i’s neighbours. Definig X(j, l) as the indicator function of j belonging to
Γi given that l ∈ Γi,

21 we have

∑
j,l∈Γi

X(j, l)

21That is, X(j, l) = 1 if j ∈ Γi and X(j, l) = 0 otherwise.
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as the number of links in agent i’s neighbourhood. Normalizing with the
possible number of links we have

C =
∑

j,l∈Γi

X(j, l)

‖Γi‖ · (‖Γi‖ − 1)/2

which is 1 in the case of total clustering and 0 if agent i’s neighbours do not
have links with each other. By summing through i and normalizing by the
number of agents in the network, we can derive the clustering coefficient
of the whole network which moves between zero and one reflecting the
clustering of the network.

AC =
1

N
·
∑
i

Ci =
1

N
·
∑
i

∑
j,l∈Γi

X(j, l)

‖Γi‖ · (‖Γi‖ − 1)/2

As mentioned in the paper, the clustering coefficient may be a misleading
measure of the local structure of a network if the links in a network increase
ore decrease over time. If this is the case, the clustering coefficient may
increase while there is no essential change in the network structure as the
whole network becomes more dense: increase in clustering stems from the
increase in average degree and local and global ties may form with equal
possibility. In order to rule out this bias we propose a measure of ’network
locality’, which is simply the ratio of the clustering coefficient as defined
above and the global density of the network. By constructing this measure
we use the fact that the clustering coefficient is a special density measure,
i.e. it relates the number of links in a neighbourhood to all possible links
in that neighbourhood. Let us denote the number of links (i.e. the degree)
of agent i by Di. In this case global density can be written as

G =

∑
iDi

N · (N − 1)/2

Our network locality meaure thus comes as

L =
AC

G
= (N − 1) ·

∑
i

∑
j,l∈Γi

X(j, l)

‖Γi‖ · (‖Γi‖ − 1)
· 1∑

iDi
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