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Abstract

The discussion about the role and effects of international trade has begun to inten-
sify recently. On the one hand, we know that specialization and participation in the
international division of labor results in more efficient production structures that
bring welfare gains. On the other hand, the resulting strong interconnectedness
of countries allows for rapid spread of shocks and a more volatile and vulnerable
system. Overall, neither full self-sufficiency nor an extremely globalized produc-
tion structure seems to be sustainable nowadays. However, the responsiveness of
countries to shocks might depend on the resilience of the countries. A system’s
(economy’s) level of resilience derives from two structural properties: redundancy
and efficiency. An efficient system has only a few mutual relationships, which
indicates strong specialized trade flows and corresponds to highly globalized pro-
duction processes of a country. In contrast, a redundant system has many more
similarly weak connections signaling a less specialized and embedded position of
elements within the system, corresponding to a lower level of involvement within
the international division of labor. While it is clear that extreme efficiency and ex-
treme redundancy are not optimal arrangements, finding the optimal combination
in between is challenging. Putting this framework of system resilience into interna-
tional trade and production networks, may indicate the optimal trade-off between
self-sufficiency (more redundant systems) and specialization within international
trade (more efficient systems). In this paper we use methods from Ecological Net-
work Analysis (ENA) to capture the countries’ structural resilience building on
sector level input-output data. The cross-country analysis shows that countries
are heterogeneous in terms of resilience, and the structure of the countries has
become more effective and globalized between 2000 and 2014. Using econometrics
tools, we find a strong and significant association between redundancy/efficiency
and the level of international trade, confirming the use of the complex system
perspective in international trade. Finally, we also examine the countries’ level of
self-organization and the window of vitality in terms of resilience.

Keywords: resilience, economic structure, input-output economies, globalization,
deglobalization
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1 Introduction
In recent years, debates related to international trade and global value chains have
intensified in the economic literature. Seeking efficiency in production processes,
economies have specialized and elements of the production process have been relo-
cated over borders. As a result, the role of intermediate goods in trade (Johnson
and Noguera, 2012; Baldwin and Lopez-Gonzalez, 2015) and the length of the
global value chains (Wang et al., 2017) has increased. From a structural perspec-
tive, international economic relationships and global value chains have become a
complex system, and economies have shifted towards globalization.

Although international trade increases the efficiency of production activities,
the high level of interconnectedness between countries goes hand in hand with
the rapid spread of shocks (Fang et al., 2020; Iloskics et al., 2021) in which the
structural properties of international linkages have a huge impact (Barrot et al.,
2020; Guan et al., 2020). In the case of a crisis, like the lockdowns triggered by
COVID-19, the exposure to foreign trade relations carries a high risk (Barrot et al.,
2020; Bonadio et al., 2021; Fang et al., 2020; Guan et al., 2020) and the need for
self-sufficiency increases (Barbieri et al., 2020; Braun et al., 2021). In addition to
the cross-border spread of shocks, the intention to reduce international trade has
recently been seen for political reasons, such as Brexit or the US-China trade war.

However, these studies show that Brexit has a negative impact not only on the
welfare of Great Britain but also on the member states of the European Union
(Dhingra et al., 2017; Giammetti, 2020; Giammetti et al., 2020). Moreover, a
similar pattern emerges in the case of the US-China trade war. The two countries
raised tariffs on certain products, which increased prices and reduced their welfare
(Balistreri et al., 2018; Li et al., 2018; Redding et al., 2019; Itakura, 2020), and
cause losses to third countries indirectly through global supply chains (Mao and
Görg, 2020; Wu et al., 2021). More generally, modelling the effect of rising tariffs
show that the cost of protectionism is considerable (Ossa, 2014). On the other
hand, backshoring, nearshoring (Piatanesi and Arauzo-Carod, 2019; Barbieri et al.,
2020) or ’renationalization’ (Barrot et al., 2020) do not necessarily make economies
less vulnerable because this restructuring of production networks can lead to more
fluctuations arising from domestic shocks or lockdowns (Barrot et al., 2020).

It can be seen from the agenda above that there is a trade-off between self-
sufficiency and highly globalized international trade. Self-sufficiency seems to be
a less efficient economic structure, where the benefits of international division of
labor cannot be realized, but exposure to global value chains, hence the risk of
shock contagion is lower. The other side of the coin is that highly globalized in-
ternational trade provides a more efficient way of organizing production processes
and generates higher welfare, but due to the high level of global interconnected-
ness, economic shocks spread between countries more easily resulting in stronger
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fluctuations in economic activity. The question may arise: is there an optimal
level of international trade for the countries.

To find the answers, it is worth starting from the assumption that the respon-
siveness of countries to shocks is linked to the economic resilience of the countries.
Resilience, in other words, could mean the ability to react to shocks (Reggiani
et al., 2002), and it can be defined more precisely as ’The ability to resist and
respond to a shock (internal or external) and recover once it has occurred . . . ’
(Annarelli and Nonino (2016) p. 2.). The reaction, therefore, means adaptation
to the new environment, in this case, adaptation to an economic shock or crisis.
One of the most significant contributions to resilience research is Ecological Net-
work Analysis (ENA). Applying the methods of ENA to examine the structure of
global value chains/production networks (Alves et al., 2019; Braun et al., 2021)
or resilience (Kharrazi et al., 2013; Chatterjee and Layton, 2020) is not without
precedent in the literature.

In our study, we measure the resilience of an economic system (described with
its input-output or production network) with the method developed by Ulanowicz
et al. (2009). In this method, a system’s (economy’s) resilience level derives from
two structural properties: efficiency and redundancy. Neither complete efficiency
nor complete redundancy is an optimal arrangement, but the latter can be found
somewhere in between, in a system structure which shows some redundancy and
efficency at the same time. If there is a lack of strong relationships between the
system elements, or in other words the links are similarly weak, the system is very
redundant showing a low level of resilience. On the contrary, if the system is firmly
bound by mutual strong relationships, i.e. some connections are extremely strong
while others are extremely weak, the system is said to be efficient, but at the same
time it provides less place for change, adaptation, so it is also not too resilient.

In case of an economic system, an effective structure emerges when countries
specialize and participate intensively in the international division of labor. In this
case only few steps of production processes are carried out within the country,
focusing on the production of a small set of input and output products. This will
lead to a production or input-output network structure which is dominated by
a few strong mutual connections within the domestic sectors together with large
external trade flows of the specialized products. This is the description of a highly
globalized economy. On the other hand, if the country steps back in the degree
to which it is involved in the international division of labor (these situations are
exemplified, with different reasons or sources, by the case of COVID, the US-
China trade war, or the Brexit), then it produces much more products within its
borders, within its domestic production network and the connections between the
production system become less asymmetric and more redundant. This type of
structure is expected to be more self-sufficient, with the capability of producing
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more goods and services within borders.
This paper has threefold objectives. First, using empirical data on the structure

of production networks, we can determine the observational optimum within the
trade-off between efficiency and redundancy assuming that countries ar resilient
on average, given the current global economic environment. This observational
optimum is calculated from the WIOD database, using the ENA methodology.
The second objective is to show the connection between a country’s position on
the redundancy/efficiency scale and the self-sufficiency/globalized scale. The third
is to determine the optimal level of self-organization in terms of resilience. In our
previous paper (Braun et al., 2021), we have already calculated and analyzed the
self-organization level of countries according to the ENA methodology, but this
was not connected to the countries’ resilience level in that paper.

The study is structured as follows. After the Introduction, we present how
the sectoral input-output network of countries is built and how the resilience of
countries can be determined according to ENA in section Methods. In this sec-
tion, we also introduce the formula of self-organization and two other structural
properties, related to resilience: the number of roles and the level of connectivity.
Then we provide a brief overview of the applied data. In section Results, we first
show the resilience of countries and its dynamics over time. Second, we analyze
the number of roles and the connectivity of the countries, and third, we reveal
the connection between structural properties (redundancy and efficiency) and the
level of international trade. Fourth, we analyze the effect of self-organization on
resilience. Then, based on the empirical results, in the discussion part we draw
some policy implications from the results. Finally, a conclusion closes the paper.

2 Methods
In this section, we briefly describe the method applied in the measurement of
structural economic resilience, self-organization as well as the roles and connectiv-
ity in production networks. These methods are borrowed from ecological network
analysis (ENA) and builds on the input-output network (production network) of
economies to describe the structure of relationships within the economic system.

2.1 The IO network

While in ecological systems the flow of energy among different species can be
placed in the focus of analysis, in economic systems it is the flow of goods and
services or similarly, the flow of value among economic agents constitute the key
connections to be analyzed. Also, data on these input-output relationships are
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Figure 1: The representation of the IO system

Notation: In the IO system, ti represent the sector t where i, j = 1, 2, ...t. The export flow of
sector ti is Ei, the other output is Oi, the import is Mi, and the other input is Ii.

relatively widely available providing a promising area to adapt tools from ecology
into economic systems.

The starting point in this respect is the flow of goods and services or the
value of transactions between any two economic sectors i and j, measured by Tij.
These values are rendered in an input-output table whose rows and columns are
the economic sectors and an entry reflects the flow of goods and services from
sector i (rows) to sector j (columns). Similar to ecological systems, the elements
of economic systems also have other types of relationships. On the one hand, the
sectors use imported inputs and other inputs to production. On the other hand,
they can export abroad and sell their products to final users. For this reason, the
number of elements in this system is n+ 2 where n denotes the number of sectors
(i, j = 1, 2, ...n). From the input side, the two other elements are the imported
inputs (Mj) and the other inputs Ij while these are the exported goods (Ei) and
other output (Oi) from the output side. The structure of this system is shown in
Figure 1.

Row sums Ti. =
∑n+2

j Tij of this table represent the total output of every sector
that leaves the system (the national economy), or in other terms the total demand
for this output. Column sums T.j =

∑n+2
i Tij represent the total input which is

used by sector j from outside the system. We define total system throughput as
the sum of all entries in the table: TST =

∑n+2
ij Tij.

Dividing the value of every entry by the total throughput, we obtain the relative
importance or probability of the connections in the IO network: pij = Tij/T . In
economic terms, this can be interpreted as a probability of one dollar transaction
being observed between any pairs of sectors i and j.

To measure the countries’ level of international trade, we use the method de-
scribed by Braun et al. (2021):
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Z =
n∑
i

T.i∑n
i T.i

Mi

T.i

(1)

where Z reflects economic openness, calculated as the weighted average of sector-
level input shares. Weights are the relative importance of sectors in total output,
while import shares reflect the share of imported goods and services within total
sectoral inputs.

2.2 Measuring structural resilience

In this subsection, we derive a system’s resilience as described in Ulanowicz et al.
(2009). Using the connection-level probabilities, we can determine the entropy of
the system as

H = −k
∑
ij

pij log(pij). (2)

According to information theory, this reflects the overall surprise associated
with the flows occurring within the system. In a very structured system where a
few strong links serve as the key backbones to the system, surprise is not present,
as all transactions are easily predictable. On the contrary, if the system is based on
a diverse set of possibly redundant relationships, surprise is large. The term sij =
−k log(pij) account for the surprise inherent in the connection between i and j: the
stronger the connection (the larger pij), the smaller the surprise associated with
it. Then, these connection-specific surprise values are weighted by their ’presence’
(pij) in the system to get H. According to ENA (Shannon, 1948; Ulanowicz et al.,
2009), the value H refers to the (flow) capacity of the system, given by its actual
structure.

While the term H is useful in describing the capacity of a system, we also have
to take into account that the relative size of the system elements determine this
capacity at least partly, or in other terms, it pins down part of the probabilities at
which transactions are observed in specific relationships. In concrete, we can define
the expected probability of a transaction from sector i to sector j as the product
of the unconditional probabilities that a transaction starts from sector i and ends
in sector j. These unconditional probabilities are the row- and column sums of
the probability matrix: pi. =

∑
j pij and p.j =

∑
i pij. The expected probability of

the transaction on (i, j) is thus pexpij = pi.p.j. This works as an expected value for
the transaction, determined by the size of the nodes i and j in the system. One
expects more transaction between large nodes than between small ones, where the
row- and column sums of the input output table Tij and the probability matrix pij
are high and low respectively.
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Defining the surprise associated with a given transaction as before, we label
the difference between actual and expected surprise as

us
ij = sij − sexpij = −k log

(
pij
pi.p.j

)
. (3)

In other terms, us
ij provides a quantification of the surprise that comes from

observing a transaction between i and j, relative to the surprise which is natural
or logical from the pure size of the nodes i and j. In economic terms, observing
a few transactions between two large sectors is not that surprising as finding the
same amount of transactions between two small sectors of the economy. Putting it
more simply, a high us

ij reflects a stronger relationship than expected (the term in
the denominator), weighted by the strength of the connection itself (nominator).

As with total system capacity H, the relationship-specific measures of structure
above can be aggregated over the whole system as

U =
∑
ij

piju
s
ij. (4)

This value reflects the overall control over the system: the larger U , the more
transactions/connections are concentrated to a few strong links which are larger
than expected according to the size of the sectors.

The values H and U refer to the total capacity and the cohesion level (already
bounded part) of the system respectively. These values are then used to capture re-
silience at the system level, as determined by the structure of connections between
system elements.

Dividing U with H, we get a measure, which describes the extent to which the
system is structurally bounded:

α =
U

H
. (5)

This α is going to be a key element in measuring structural resilience. The
higher is α, the more structurally bounded and hence, more efficient the system
is: it is characterized by a few specialized sectors and a few strong connections
among them. As α gets smaller, redundancy or diversity increases in the system.
The theoretical and empirical challenge is to determine the α value associated with
the most resilient system structure. Clearly, it lies somewhere between the most
efficient and structurally bounded (α = 1) and most redundant and structurally
diverse (α = 0) systems. To get the optimal value of α, Ulanowicz et al. (2009)
defines the Fitness for Evolution (F ) as

F = −kα lnα. (6)
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Figure 2: The possible Fitness for Evaluation values of a system, as a function of
α

Notation: The black curve represent α values on the horizontal axis and the corresponding fitness
values according to Eq 6. The green dot denotes the ecological optimum where α = 1/e and
F = 1/e.

This formulation comes from the observation that in mature ecosystems, which
can be assumed around optimally resilient, α values are found to be around 1/e.
The formula for F takes its maximum value at α = 1/e, as shown in Figure 2.
In this paper, the α value is called the resilience indicator while the level of a
system’s resilience is measured by F , called fitness indicator. As this optimum is
based on observations about ecological systems, we define the ecological optimum
as α∗

eco = 1/e, and the corresponding ecological optimum fitness as F ∗
eco = 1/e,

given that k = 1. If we use the transformation of F as

F̂ = −eαβ lnαβ (7)

with β = 1/ln(α), F̂ will be bounded between 0 and 1, with F̂ = 1 at α∗
eco = 1/e.

Using this form and the empirical value of a system’s α, we can calculate the
normalized level of the system’s fitness.

2.3 The window of vitality

A system’s structure can be described by two other system metrics: roles and
connectivity (Zorach and Ulanowicz, 2003). The number of roles (R) shows how
many different functions the sectors have (also referred to as the ’depth’ of the
system), while the connectivity (C) shows the average value of flows into or out of
a sector (the ’breadth’ of the system). The weighted form of these metrics can be
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determined as (Ulanowicz et al., 2014)

C =
∏
i,j

(√
pi.p.j

pij

)pij

(8)

R =
∏
i,j

(
pij
pi.p.j

)pij

. (9)

The Window of Vitality refers to the neighborhood of the optimal point in
Figure 2. Just as the resilience indicator (α) and the corresponding fitness values
(F , F̂ ), C and R are functions of the structure of the system, described by the
pij values. It follows that roles and connectivity can also be used to describe a
system’s closeness to the optimal structure (Ulanowicz et al., 2014). Randomly
’wired’ systems show an even distribution of the latter two indicators, while well-
operating ecological systems confine themselves to the range between 1 to 3.25 in
terms of connections (C) and between 2 to 5 in terms of roles (R).

2.4 Self-organization

A further important structural characteristic of an input-output system is the
extent to which it can organize itself, rely on inner connections or how strong the
feedbacks are within the system. We capture the level of self-organization with the
method developed by Finn (1976). The Finn cycling index computes the power
of internal circulation in an input-output system. It quantifies how many times
an average unit flows through the system before it leaves it. Using the Leontief-
inverse, the sectoral level of self-organization (FCIi) can be defined as

L = (I − T)−1 (10)

l̂i =
lii − 1

lii
(11)

FCIi = l̂i
T.i∑n
i T.i

(12)

where I is the identity matrix and lii is the ith diagonal element of L. Similar to
openness, the country level of self-organization is the sum of sectoral values

FCI =
n∑
i

FCIi. (13)
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3 Data
All the measures and indicators introduced so far are going to be used in the con-
text of input-output systems, as described in Figure 1. The empirical basis for
this is data from the World Input-Output Database (2016 release) (Dietzenbacher
et al., 2013; Timmer et al., 2015), that provides sector-level information on within-
country and between-country flows of economic transactions. The WIOD database
contains data between 2000-2014 for 43 countries, with 56 sectors in each country.
The structural indicators can be calculated from the 56x56 input-output tables
given for every national economy. As a result, we work with separate networks
for every economy in every year, with these networks describing the input-output
connections of the given economy. First pairwise connections are taken into ac-
count between every economic sector, and exports, imports as well as other outputs
and inputs are considered in the network to have a complete representation of the
economic structure of the countries.

Other macroeconomic variables (GDP, employment and capital) are also used
in order to refine the results. The source of this data series is the Penn World
Table (9.1 release) (Feenstra et al., 2015).

4 Results
In this section, we first describe the structural resilience of the countries and
its dynamics, based on the resilience indicator and the fitness values. Then, we
examine the roles and connectivities of these economic systems. In the third step,
we test the connection between the resilience indicator and the level of international
trade, and finally, we reveal the effect of self-organization on resilience.

4.1 The structural resilience of the IO economies

In the first step, the α values were calculated according to Eq 5 for every country
and for every year in the dataset, together with the corresponding fitness indicators
(F ), as in Eq 6. Figure 3 visualizes the main observations arising from these calcu-
lations, with respect to how countries are located along the redundancy/efficiency
scale (α), how this relates to their fitness (according to α∗

eco), and how the dynamics
of these characteristics look like.

Panel a) of Figure 3 represents the final year of the dataset, 2014. The blue
dots correspond to countries in the sample and their 2014 resilience indicator values
are measured on the horizontal axis, while the vertical axis show the respective
fitness values. The red point denotes the optimal α and F values observed for
ecological systems (α∗

eco and F ∗
eco respectively). The purple point shows the most
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frequent α and F values observed in the sample countries for 2014 (see panel b)
for details). The most important observation is that the economies in our sample
are found within a relatively small range of the alpha values, showing a relatively
similar level of the resilience indicator α and fitness F . These values group to
the left of the ecological optimum, indicating that these economic systems are
more redundant than ecological systems. This finding is consistent with previous
literature in this field (Kharrazi et al., 2013). Fath (2015) has identified two reasons
for this observation: one is that economic data collection is not that accurate and
this type of input-output data is not available for a wide range of economies and the
other is that economic networks are larger networks, with more nodes (depending
on the level of analysis) than the typical ecological system.

We emphasize additional possible reasons for this relatively high redundancy
of economic systems. First of all, the cost and time of transportation are still
considerable in the 21st century. There are many products and services which
is produced spatially close to its consumption. Second, due to national security
reasons, for example, in the case of food and energy supply, countries support some
economic activities even though comparative advantage lies elsewhere. Third,
international trade is hindered by tariffs and other political reasons, such as in
the case of Brexit or the US-China trade war. Although this list is far from being
exhaustive, but it provides some examples why the redundancy of sectors in the
sector-level IO structure is high.

Especially on the basis of the arguments above, one may infer that the opti-
mal α values observed for ecological systems may not be adequate for economic
systems. Along this line, we determine the ’optimal’ α value in another way: we
assume that most countries have a close to optimal economic structure, given the
actual technological framework of the global economy. This calls for a definition
of optimal structure which coincides the most frequent setup observed within our
sample. Although this solution seems tautological at the first sight, we must note
that the same principle lies behind the definition of the ecological optimum, α∗

eco

and F ∗
eco.

Technically, we fit an empirical density function to the histogram of the ob-
served α values and then calculate the maximum point of this density function and
label it as the ’empirical optimum’. The location of this maximum point is denoted
with α∗

emp while the maximum fitness value is F ∗
emp. This histogram and density

function, together with the maximum point are shown on panel b) of Figure 3 (the
purple point representing the optimal point). This point is also marked in panel a)
with purple. While panel b) shows the empirical α values and the corresponding
density function for 2014, panels c) and d) show the dynamics of these indicators
over the whole sample period between 2000 and 2014. These visualizations show
that the countries have gradually but steadily become more efficient over time
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Figure 3: Structural resilience of the countries

Notation: Figure a) shows the empirical fitness values (F ) values of the countries by blue points
in 2014. The purple point is the empirical, the red is the ecological optimum. Figure b) represent
a histogram and density function by the empirical α values in 2014 where the maximum point of
the density function is the empirical optimum, denoted by purple point. In Figure c the annual
density functions and their maximum values are shown together with the empirical α values.
Figure d) also depicts the empirical optimum of α values separately.
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along the α scale. This development moved economies closer towards the ecolog-
ical optimum on average. The background of this may be that trade barriers, for
example, the cost of transportation, have decreased between 2000 and 2014, while
the global economy went through a relatively steady globalization period over this
period of time which rendered production networks more efficient and less reliant
on within-country feedbacks and supply chains. Also, panel d) reflects a tempo-
rary stagnation in this process around the financial crisis in 2008 and 2009. In
the following analysis, we use the latter empirical optimum values to derive the
level of resilience for the countries in our sample. In the discussion section we will
present the resilience of the countries.

4.2 Roles and connectivities - window of vitality

Based on the ecological optimum value of alpha (α∗
eco), Ulanowicz et al. (2014)

define roles and connectivites as mentioned in section 2.3, together with the con-
nection between them as C = R(1−α∗

eco)/(2α
∗
eco). Using this relationship and α∗

eco, we
can determine the values of role (R) corresponding to different values of connec-
tivity (C) in order to reach the maximum level of resilience. These combinations
of C and R values are described in panel a) of Figure 4 by the black line. As
we described earlier, well-operating ecological systems have a connectivity score
between 1 and 3.25, while roles tend to be found between 2 and 5. These values
provide the limits for the Window of Vitality (see the square on Figure 4). The
blue points represent the empirical values of the two indicators for the sectoral IO
economies, based on data for 2014. The results show that countries are reaching
the lower limit for the role range (horizontal axis), but lay far above the upper
limit for connectivity. This means that domestic trade flows of the countries are
larger than necessary for this ecology-based measure of resilience. This result is in
line with the previous observation in Figure 3, where it was shown that observed
economic systems are more redundant than ecological systems.

The dynamics of the role and connectivity indicators are represented in panel
b) and c) of Figure 4 respectively. These images indicate that the number of roles
has increased while the level of connectivity has decreased in general, apart from
the last two years of the sample. Also, the financial crisis in 2008 and 2009 is
visible in the case of roles: there is a sudden drop in that year. These observations
mark a gradual approach towards the ecological optimum of system resilience for
the observed economies.

4.3 Globalization and deglobalization

One of the key motivations behind this study is to reveal the connection between
the level of integration into the global production networks and the extent to
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Figure 4: Window of Vitality, the optimal combination of role and connectivity
and the empirical values of the countries (2014)

Notation: The figure a) plots the countries by their role R and connectivity C together with the
Window of Vitality in 2014. The figure b) shows the change of the roles in time while figure c)
the change of connectivities for the whole period.
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which countries show resilient properties. So far, we discussed a method and
some descriptive results for the latter, i.e. the resilience of national economies
based on empirical solutions borrowed from ecological network analysis – this is
the resilience indicator α. Also, we have defined the openness measure (Z) based
on the input-output data in section 2.1. Practically, we search for the connection
between α, a primary measure of resilience and Z, the economic openness of a
country.

As a first step in this search, we calculate the correlation coefficient which is
found to be 0.58 for the whole examined period (pooled sample). In order to obtain
more detailed and robust results, we employ the panel nature of the data at hand
and estimate different setups of fixed effects panel models with country and time
fixed effects, while also controlling for macroeconomic factors such as GDP per
capita, the level of employment, and the size of the capital stock. The results of
these estimations with different model versions are found in Table 1, placed in the
Appendix. The results from these estimations show that the positive connection
between the resilience indicator (α) and economic openness (Z) is robust. This
result suggests that by pointing to resilient systems along the α axis, we can also
capture an optimal level of international trade.

4.4 The optimal level of self-organization

In a previous study (Braun et al., 2021), we have thoroughly examined the coun-
tries’ Finn cycling index (as defined in section 2.4), but haven’t determined any
desirable level of this index in terms of economic resilience. In the first step, we
calculated the FCI as in Equation 13 for every country and year. Then, these
values were put into a panel regression model with country and year fixed effects,
with the dependent variable being the economies’ normalized fitness value, F̂ .

The results of these panel estimations are summarized in Table 2, placed in
the Appendix. The findings suggest that there is a significant inverted U-shaped
relationship between resilience (F̂ ) and the cycling index (FCI) as shown in Table
2. It indicates that neither a high nor a low level of self-organization is optimal
in terms of resilience. In the case of high self-organization, the sectors rely on
high amounts for domestic inputs directly and indirectly, and the shocks can more
easily spread within the system. The level of self-organization is low, the spread of
shock will be smaller, and the exposure to foreign relationships will be higher. It is
important to note that the Finn cycling index takes into account indirect and mu-
tual links between the elements (feedbacks). Using the coefficients of model Panel
B5, we can calculate the optimal level of self-organization in terms of resilience.
The inverted U relationships, the countries’ values and the optimum (0.107, green
point) can be seen in Figure 5. In the next section, we describe some ways how
countries can increase their resilience by the change of openness and cycling index.
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Figure 5: The effect of the Finn cycling index on resilience (2014)

Notation: Using the coefficients of the panel model B5, Figure 5 shows the estimated values of
the resilience indicator (α) by the black curve. The blue points are the empirical cycling indexes
while the green point shows the maximum impact of the cycling index on resilience.

5 Discussion, policy implications
The main goal of this study is to find an optimum between self-sufficiency and
highly globalized international trade in terms of resilience. Based on data from
the latest available year (2014), this section shows which countries are far away
from this optimum and in which direction, and finally, what these countries might
do to get closer to a more resilient structure.

We start this analysis by the resilience indicator and the level of resilience in
Figure 6. Panel a) of this figure ranks the countries by the difference between
the empirical optimum α∗

emp and the individual, observed α values. The largest
negative values mean that the countries, such as Romania, Poland, or the USA,
have a more redundant structure compared to the optimum. The largest positive
values show that the countries, such as Luxembourg, Cyprus, Taiwan, Malta and
Ireland, have a very effective structure. Belgium is really close to the optimum
which means that Belgium is the most resilient country in this sample. Panel b) of
Figure 6 ranks the countries by normalized fitness (F̂ ). This ranking shows that
in addition to Belgium, Switzerland, India, Norway and the Czech Republic are
also among the most resilient countries. However, countries with very redundant
or effective structures are found at the end of the ranking.

We can also rank the countries in terms of self-organization. Figure 5 shows
the countries’ positions relative to the empirical optimum. Figure 7 also ranks
countries in two other ways. Panel a) depicts the deviations from the estimated
optimum of 0.107 (see Figure 5). The largest negative values suggest that the
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Figure 6: Countries’ redundancy and efficiency (2014)

Notation: The figure a) ranks the countries by the difference of the empirical optimum of α and
the empirical α of a country. The figure b) ranks the countries by a the fitness of evaluation F̂ .
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Figure 7: The level of countries’ self-organization (2014)

Notation: The figure a) ranks the countries by the deviation from optimal Finn cycling index
which is optimal Finn cycling index in terms of resilience minus empirical FCI of a country. The
figure b) ranks the countries by these deviations in absolute values.
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level of self-organization is higher than necessary from a resilience point of view,
for example, in the case of Greece, Cyprus, Denmark, or Hungary. The largest
positive values show that these countries have low self-organization levels, such as
China, Latvia, or Taiwan. Panel b) of Figure 7 ranks the countries according to
the deviation from the optimum, independently of the direction of this deviation.
In terms of resilience, Czech Republic, Spain, Italy, and France are close to the
optimal of self-organization.

The resilience can be increased in two ways. On the one hand, through the
level of international trade, and on the other hand, through the level of self-
organization. We plot the countries by their α value (vertical axis) and Finn
cycling index (horizontal axis) in Figure 8. The purple line shows the empirical
optimum of redundancy/efficiency, while the green line indicates the optimal level
of self-organization. These lines separate 4 different areas, while the optimal struc-
ture is found at the intersection of the two colored lines. Countries in the upper
left area (e.g. Cyprus, Ireland, or Greece), should decrease their openness and
increase self-organization. It is important to note that, there is a negative connec-
tion between self-organization and openness, therefore, when a country decreases
its openness, in parallel, it also raises the level of self-organization. Overall, for
these countries, it seems to be a straightforward strategy to move the best - and
easy - strategy.

Figure 8: The optimum level of self-organization and international trade (2014)

Notation: The figure plots the countries by their AlphaDiff and Finn cycling index, based on
data 2014. The green line indicates the optimal level of Finn cycling index in terms of resilience
while the purple line represents the optimal α.

For the countries in the upper right area (China and Taiwan,) the strategy is
more complex, because a decrease in openness increases self-organization, instead
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of decreasing it, therefore, they would move away from the centre along this dimen-
sion. Similarly, the countries such as Romania, the USA, or Sweden, can become
more resilient when they increase their openness, however, they would decrease the
self-organization, instead of increasing it. The regression results in Table 2 and the
coefficients of the cycling index in these models show that the cycling index has a
moderate impact on resilience, therefore, changing the level of openness seems to
be more powerful in this respect. Therefore, adjusting the openness level of these
countries has more impact, but these countries should make structural changes to
increase their self-organization in parallel. It is interesting to see that there are
no countries in the lower right area, where a low level of openness coincides with
a high level of self-organization. Finally, referring back to the introduction of this
study, it is worth analyzing the resilience and openness in terms of Brexit and the
US-China trade war. The results in Figure 7 show that Great Britain and the
USA have a very redundant structure, while China is very effective. Brexit and
the trade war can only increase this redundancy in the future, less desirable in
terms of resilience for Great Britain and the USA.

6 Conclusion, future developments
Kharrazi et al. (2020) draw attention to making deeper analyses of economic sys-
tems, such as their dynamics and a wider range of structural properties. Using the
methods of ENA, we examined the structure of national economies in several ways.
This analysis contributes to a better understanding of how economic systems are
functioning and how their structural properties evolve over time.

In this study, we analyzed the structural resilience of the countries through
sector level input-output data. Compared to the ecological systems, these sectoral
economies are found to be more redundant. The reason behind this may be the
interest of societies to build redundant production systems for national security
interests or the cost of transportation. However, there can be another important
reason for this higher redundancy which is related to applied data. Fath (2015)
mentioned that the economic data are not available for a large set of systems and
the economic systems are larger compared to ecological ones. We also note that
the sector level data that we use in this study in order to make country-level com-
parisons are relatively aggregated: transaction volumes in the IO tables hide very
different interactions among very different individual economic actors, resulting in
a relatively dense, hence redundant picture of the system under question. Putting
it more simply, we expect individual firm-level economic IO systems to be more
close to the ecological optimum, showing less redundancy (Fiscus, 2009; Kiss et al.,
2019).

Measuring resilience with the ENA method developed by Ulanowicz, we have
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focused on resilience from a structural perspective. However, when searching for
an optimal structure, we may also take into account the trade-off between effi-
ciency arising from more specialized positions in global production networks on
the one hand and exposure to rapid shock contagion and loss of diverse produc-
tion capacities on the other. The risk embedded in this exposure manifests itself in
crisis situations like lockdowns triggered by a pandemic, wars, or natural disasters.
Evaluation of the costs of these events against the gains from efficiency requires a
theoretical approach with some estimation of social welfare in the background.

Apart from its roots in system structure, resilience can be also identified by the
speed at which a system is able to return to its steady state after being hit by a
shock. Using this approach, it is possible to examine standard economic variables,
like GDP or unemployment, where – by assumption – more resilient countries
arrive back to their steady state more rapidly after the event of a shock. Testing
this assumption is part of future work. On the other hand, we have only given a
superficial analysis of possible strategies for countries to increase their resilience.
It would also be desirable to examine more profoundly the role of the weights of
the estimated relationships at sectoral level in building higher levels of resilience.
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Appendix
Table 1: Regression tables for the connection between the level of international trade

and resilience indicator

Pooled A Panel A1 Panel A2 Panel A3 Panel A4
Intercept 1.080E-01***

(1.662E-03)
Z 9.414E-02*** 7.383E-02*** 7.612E-02*** 7.965E-02*** 9.169E-02***

(5.844E-03) (2.600E-02) (2.627E-02) (2.524E-02) (2.605E-02)
GDPPC 1.670E-07*** -4.227E-07*** -3.930E-07*** -3.651E-07***

(4.108E-08) (1.349E-07) (1.314E-07) (1.284E-07)
EMP 3.842E-05*** 7.277E-05 -1.544E-04**

(5.538E-06) (1.620E-04) (7.421E-05)
CAPITAL -1.015E-04 4.703E-04***

(7.749E-05) (6.554E-05)
Country FE No Yes Yes Yes Yes
Year FE No Yes Yes Yes Yes
Adj. R2 0.3964 0.0405 0.0927 0.0984 0.1722
F-stat 106.7514 84.1537 61.9026 43.0833 48.4821

Dependent variable: α. Robust standard errors are parantheses. *** < 0.01, ** < 0.05, * < 0.1.

Table 2: Regression tables for the connection between self-organization and resilience

Pooled B Panel B1 Panel B2 Panel B3 Panel B4 Panel B5
Itercept 1.001E+00***

(7.752E-04)
FCI -7.424E-03 7.742E-02* 8.783E-02** 8.625E-02** 1.141E-01** 1.085E-01**

(1.526E-02) (4.002E-02) (3.688E-02) (3.831E-02) (4.520E-02) (4.696E-02)
FCI2 6.966E-02 -3.174E-01** -3.575E-01** -3.475E-01** -5.236E-01** -5.073E-01**

(8.106E-02) (1.558E-01) (1.445E-01) (1.559E-01) (2.052E-01) (2.033E-01)
GDPPC -6.225E-09 -5.744E-08 -5.901E-08 -5.316E-08 -5.144E-08

(6.950E-09) (4.708E-08) (4.925E-08) (4.804E-08) (4.921E-08)
EMP 1.680E-06 -3.982E-06 -3.480E-05* -3.496E-05*

(1.022E-06) (1.372E-05) (1.978E-05) (2.003E-05)
CAPITAL -6.260E-05*** 7.816E-05* 7.562E-0*5

(1.316E-05) (4.671E-05) (4.450E-05)
Z -8.469E-03*** -2.084E-03

(1.004E-03) (8.091E-03)
Country FE No Yes Yes Yes Yes Yes
Year FE No Yes Yes Yes Yes Yes
Adj. R2 0.1459 -0.0643 -0.0499 -0.0513 -0.0289 -0.0293
F-stat 19.3393 9.5564 9.4705 7.1393 8.5810 7.2738

Dependent variable: F̂ . Robust standard errors are parantheses. *** < 0.01, ** < 0.05, * < 0.1.
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