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Abstract: The aim of the study is to check the validity of five different risk-estimation models 

for two-asset portfolios, a topic which is relevant in model selection both for determining the 
minimum capital requirements for trading book portfolios and for the regulatory monitoring of 
the performance of internal risk models. Simulations based on a real data set containing the 
FTSE 100 constituents were carried out, and the risk was gauged by Expected Shortfall, a 
measure which also captures tail risk. Given that the period studied includes that of the 
subprime crisis, there is an inherent opportunity to compare and contrast the results produced 
under disaster conditions with others from less stressful periods. Our empirical analysis has 
confirmed that using Expected Shortfall instead of Value-at-Risk alone is not enough, and that 
the risk model has to be carefully selected and back-tested. The general Pareto distribution 
proved to be a prudent choice for risk models. In fact, among the five models considered, the 
model when general Pareto marginals were coupled with Clayton copula showed the best 
performance. It was, however, also revealed that this model is susceptible to being “over-
cautious” in estimating loss. 

 
Keywords: Risk estimation models, Portfolio, Back-testing, Expected Shortfall, Copula 
 
   
1 Introduction 
 
Following the eruption of the subprime crisis in 2007 there has been a much greater need 

in the financial sector for valid, effective measures of risk, and this is of crucial importance in 
evaluating the performance of the trading book portfolios of banks. The recently published new 
Basel III standards (BCBS 2016) provide a revised framework for determining the capital 
charge for market risk in internal models with a shift from Value-at-Risk (VaR) to Expected 
Shortfall (ES), and this risk measure does improve the capture of tail risk. In spite of the fact 
that ES has gained a foothold in Basel III and is used as the proposed, new measure in 
estimating the risk of trading book positions, the Basel Committee still supports VaR for back-
testing purposes.  

 
However, there was a good deal of debate in the literature as to whether ES can be back-

tested. The root of the debate was the lack of a certain property referred to as elicitability. 
Gneiting (2011) has pointed out that ES, in contrast to VaR, is not elicitable. It has led some 
voices to conclude that this risk measure is not back-testable at all (see for instance Carver 
2013). Some others like Acerbi and Székely (2014) are convinced that this is not a real problem 
as they emphasize that elicitability has not even been exploited in the back-tests of VaR. 
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In this paper, we keep an open mind regarding the above-mentioned debate by taking an 
empirical standpoint. In fact, our aim is twofold. We first attempt to show how a particular back-
testing procedure works in practice, whilst, in particular, trying to determine whether it reliably 
detects “bad performance” and whether it is capable of making a clear distinction between 
different risk-estimation models. Secondly, based on our back-testing results, we try to identify 
certain elements which may help us to devise better risk-estimation models.  

 
The paper is structured as follows. In the next section a brief theoretical background to risk-

estimation is provided, following which we describe the details of simulation modeling. We then 
present and discuss the results before closing the paper with some concluding remarks. 

 
2 Theoretical Background 
 
Estimating portfolio risk requires two important steps. The first one is the selection of an 

appropriate measure of risk, and the second is modeling statistical dependence, namely the 
co-movement between returns on different assets comprising the portfolio. 

 
Markowitz (1952) was the first to explicitly involve risk as a decision parameter into the 

portfolio optimization process. He proposed making portfolio selection decisions relying on the 
expected return (E) and the variance of return (V).  He used the former to gauge average 
profitability, and the latter to evaluate risk. For measuring dependence, i.e. the co-movement 
between the different pairs of asset returns, the linear (Pearson) correlation coefficients were 
used. 

 
As Dowd (2005) concluded, in the case of real-world portfolio allocation decisions, two 

problems arise. The first is that widely used risk measures such as variance or VaR become 
unreliable (Günay (2017)). The second problem is that correlation-based (variance-
covariance) approaches fail in correctly modeling statistical dependence. VaR can be 
determined as the highest possible loss at a certain confidence level for a given time interval. 

Based on the loss distribution function (F), at the confidence level , VaR can be defined as 

the -quantile of the loss distribution (Dowd and Blake 2006): 
  

𝑃(𝐿 ≤ 𝑉𝑎𝑅𝛼(𝐿)) = 𝐹(𝑉𝑎𝑅𝛼(𝐿)) = 𝛼                   

(1) 
 

where P indicates probability and L stands for loss. ES is defined as the expected value of 

losses exceeding VaR at a given confidence level ( ) and time interval: 

 
𝐸𝑆𝛼(𝐿) = 𝐸(𝐿|𝐿 > 𝑉𝑎𝑅𝛼(𝐿))                                   (2)

   
ES offers a possible solution to the first problem mentioned above, since it has more 

attractive theoretical and empirical properties than most of the other risk measures. First of all, 
it is a downside measure of risk and, hence, consistent with the intuitive notion of risk, since it 
takes into account only the unfavorable part of the return/loss distribution. Secondly, it is a 
coherent risk measure in the sense of the Artzner et.al (1999) axioms. Thirdly, it also accounts 
for losses beyond VaR, which is especially important in the case of fat-tail distributions. Finally, 
it has two favorable technical properties: it is continuous with respect to the confidence level 
and convex with respect to the control variables, the latter being highly relevant in portfolio 
optimization.1 

 

                                                             
1 In order to optimize within the mean-ES framework, as it was shown by Rockafellar and Uryasev (2000), one 

has to solve a simple linear programming problem. It is worth mentioning that for ES they used the term Conditional 
Value-at-Risk (CVaR). 
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To the challenge of proper dependence modeling, as highlighted and illustrated by Dowd 
(2005), the application of copulas offers a tractable approach.  

 
Back-testing or out-of-sample analysis2 is a technique which makes it possible to evaluate 

the accuracy of a forecasting method relying on historical data (McNeil et al. (2015)). In the 
implementation two different non-overlapping time horizons are used. The first is the estimation 
period - which serves as a basis for estimating the intended financial variable (e.g. return or 
risk), and the second is the forecasting period - which can be used to compare its realized 
(real) value to that of the estimated one. In our analysis we intend to check the validity of 
different ES estimation models, and we do this by comparing the real portfolio loss with the 
estimated ES. 

 
For back-testing purpose, we utilized the scoring function introduced by Acerbi and Székely 

(2014): 
 

Z =
1

(1−∝)T
∙ ∑

XtIt

ES∝,t

T
t=1 + 1                                                           (3) 

 
where 𝐸𝑆𝛼,𝑡 is the estimated value of risk (measured by expected shortfall) in period t at a 

given confidence level  . 𝑋𝑡 is the realized portfolio return in period t, and T is the total number 

of periods considered. T is the time horizon (normally a year) for which the evaluation is made. 

𝐼𝑡 is an indicator variable with the value of 0 or 1. It is 0 when 𝑋𝑡 + 𝑉𝑎𝑅𝛼,𝑡 ≥ 0 and 1 when      

𝑋𝑡 + 𝑉𝑎𝑅𝛼,𝑡 < 0. In the latter case −𝑋𝑡 = 𝐿𝑡 > 𝑉𝑎𝑅𝛼,𝑡, i.e. the realized loss is higher than the 

estimated value of 𝑉𝑎𝑅𝛼,𝑡. We refer to this case as a violation. In an ideal case when the model 

predicts ES perfectly, the Z-score is equal to zero. A positive value of Z indicates an 
overestimation of ES, whilst a negative value means that the risk is underestimated. 

 
3 Simulation Modeling 
 
3.1 Portfolio Models 

 
The marginal return distributions of the portfolio components were modeled either using 

normal or generalized Pareto distribution (GPD). As is well-known, the normal (or Gaussian) 
distribution can be uniquely described with two parameters - the mean and the standard 
deviation. The GPD can be specified by three parameters - the first for the location (𝜇), the 
second for the scale (𝜎) and the third for the shape (𝜉).3 This type of distribution has proved to 
be useful in modeling tail risk. The dependence structure was modeled relying on various 
copula models, and, in particular, as a benchmark case, we used the linear correlation 
coefficient or the so-called Gaussian copula. In addition, there were two other one-parameter 
Archimedean copulas fitted to the data - a Clayton and a Gumbel copula. The reason for our 
choice is that these types of copula have proved to be useful in modeling the simultaneous 
occurrence of major losses. 

                                                             
2 It is also known as ex ante analysis. 
3 The GPD can be characterized by the cumulative distribution function as follows (Coles (2001)). 
 

𝐹(𝜇,𝜎,𝜉)(𝑥) =

{
 
 

 
 
1 − (1 +

𝜉(𝑥 − 𝜇)

𝜎
)

−
1
𝜉

  for 𝜉 ≠  0 

1 − exp (−
𝑥 − 𝜇

𝜎
)  for ξ = 0

 

 

for 𝑥 ≥  𝜇 when 𝜉 ≥ 0, and 𝜇 ≤ 𝑥 ≤ 𝜇 −
𝜎

𝜉
 when 𝜉 < 0, 

where 𝜇, 𝜎, 𝜉 are real numbers, and  𝜎 > 0. 
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The bivariate Clayton and Gumbel copulas can be defined, respectively, as follows (Nelsen 

(2006)): 
 

𝐶𝜃(𝜈1, 𝜈2) = 𝑚𝑎𝑥 {[𝜈1
−𝜃 + 𝜈2

−𝜃 − 1]
−
1

𝜃, 0} for 𝜃 ≥ −1, 𝜃 ≠ 0       (4) 

 

     𝐶𝜃(𝜈1, 𝜈2) = 𝑒𝑥𝑝 {−[(−𝑙𝑛𝜈1)
𝜃 + (−𝑙𝑛𝜈2)

𝜃]
1

𝜃} for 𝜃 ≥ 1      

      (5) 
 
where 𝜈1 and 𝜈2 are standard uniform random variables (i.e. they are distributed evenly over 

the range [0,1]). 
 
Considering all of the possible cases – except one4 – with the two different marginals and 

the three dependence structures, all in all we have studied five different models. They are 
presented in Table 1. 

 
Table 1 Portfolio models simulated 

Name of Model Marginals Copula 

Normal-Gaussian Normal Gaussian / Linear correlation 

Normal-Clayton Normal Clayton 

Normal-Gumbel Normal Gumbel 

Pareto-Clayton GPD Clayton 

Pareto-Gumbel GPD Gumbel 

              Source: own work 

 
As a profitability measure, the expected return (mean) was considered, and the risk was 

measured by ES.  
 
3.2 Simulation Process 
 
Before performing the Monte Carlo simulation, parameter estimations were carried out. For 

each out-of-sample period we estimated the parameters of the normal and the Pareto 
distribution from real market data. Also, the copula parameters were estimated for each pair 
of equities to describe the co-movements between their returns.  

 
Following the estimation of the necessary parameters, we generated returns for the different 

portfolio models by Monte Carlo simulation. First, a two-variable standard uniform distribution 
with the intended copula was simulated, and then the intended marginals were fitted on the 
given copula. The steps of this process can be described as follows (see also Bouyé et 
al. 2000; Dowd 2005). 

 
• Generate two independent random variables from a standard uniform distribution: 𝜈1, 𝜈2. 
  

• Set 𝑢1 = 𝜈1.                                                                  (6)  

                                                             
4 In fact, we have not considered GPD marginals coupled with Gaussian copula.   
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  𝐶(𝑢2|𝑢1) =
𝜕𝐶(𝑢1,𝑢2)

𝜕𝑢1
= 𝜈2.                                                                            (7) 

 
• Solve (7) for 𝑢2. 
• Use the classical inversion method to obtain random values for the intended marginal: 
 

  𝐹−1(𝑢𝑖) = 𝑟𝑖        (𝑖 = 1,2).                                                                (8)
  

• Obtain a simulated portfolio return with a portfolio-weight w: 

 
  𝑅 = 𝑤𝑟1 + (1 − 𝑤)𝑟2.                                                                            (9) 
 
• Repeat the steps m times (in our case 𝑚 = 10000). 

• Determine ES based on the simulated return distribution.   
 
4 Results 
 
4.1 Data and Descriptive Statistics of Individual Equities 
 
In the empirical analysis, 25 two-asset portfolios were studied by randomly selecting various 

couples of company shares from among the FTSE 100 constituents. The estimation of the 
marginals and that of the dependency structure of the return distributions was based on the 
above-mentioned real-data set comprising the daily closing prices of the relevant equities for 
the time interval of 16 years, stretching from January 4, 2000 until December 31, 2015. For the 
equities involved in the analysis, daily percentage returns were calculated. 

 
There were, all in all, 31 individual equities included in the 25 two-asset portfolios 

considered. Table 2 shows the descriptive statistics of the daily returns calculated for the three 
adjoining five-year periods from January 2, 2001 until December 31, 2015. All the average 
values – except for the correlation presented in the last column – given in the table must be 
interpreted as grand means - namely as the results of averaging done over time and equity 
also.5 The average correlation is calculated over time, and the 25 equity pairs comprising the 
portfolios are considered. The average, minimum and maximum returns are presented as 
percentages. 

 
 Table 2 Descriptive statistics of the 31 individual equities included in the two-asset 
 portfolios for the three adjoining five-year periods between 2001 and 2015 

 
Period 

Average 
Return 

(percent) 

Minimum 
Return 

(percent) 

Maximum 
Return 

(percent) 

Average 
SD 

Average 
Skewness 

Average 
Kurtosis 

Average 
Correlation 

2001-
2005 

0.028 -62.97 23.89 0.020 0.113 10.15 0.248 

2006-
2010 

0.034 -66.57 73.24 0.023 -0.192 13.18 0.381 

2011-
2015 

0.029 -22.10 18.43 0.015 0.323 12.43 0.377 

Source: own calculations based on daily closing prices of FTSE 100 constituents provided by Bloomberg   

 
It is not surprising that the most extreme return, standard deviation, kurtosis and correlation 

values appeared in the second period – which covered the subprime crisis. Indeed, between 
2006 and 2010 the average daily return was 3.4 basis points, with minimum and maximum 

                                                             
5 Because of the high number of equities, we do not report individual values. 
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returns of -66.57 and 73.24 percent, respectively. The average standard deviation, kurtosis 
and correlation values were 0.023 (2.3 percent), 13.18 and 0.381, respectively. It is also 
notable that the average skewness was negative (-0.192) in the same period. The normality of 
the daily return was tested for all equites in each period, and none of the return distributions 
proved to be normal at 5 percent significance level. 

 
4.2 Simulation Results 
 
There was a sliding window of 250 days (in practical terms, a year) used as an estimation 

period. After having estimated the ES for the day following the first year, we shifted the in-the-
sample estimation period one day forward and made a new risk-estimation for the subsequent 
day. In total, with this rolling technique, we generated 3750 non-overlapping out-of-sample ES 
estimations for each portfolio models6. In accordance with the recent Basel III regulation 
(BCBS 2016) ES has been estimated as having a 97.5 percent confidence level. 

 
Based on the estimated daily ES values, the Z-score given in (3) was determined for each 

of the 25 portfolios considered. We studied equally weighted portfolios, with 50-50 percent 
invested in each of the two equities. The time horizon (T) in calculating Z was set to be 250. It 
made possible to compare and contrast the performance of the different models on a yearly 
basis. 

 
Figure 1 shows the average Z-scores for the 25 randomly selected portfolios given by the 

different portfolio models over the forecasting period from 2001 until 2015. It can be concluded 
that all models considered normally agreed in either over- or underestimation the capital 
charge for risk. Indeed, there were only two years (2010 and 2013) when two of the models, 
and in particular those with the Clayton dependency structure, on average overestimated the 
ES value, whilst the other three underestimated it. Further, there is a periodic change in under- 
and overestimation. Among the five models, the Pareto-Clayton showed the best performance, 
but, in fact, in 7 of the 15 years it produced the lowest average Z-score (in absolute value). It 
is notable that it proved to be the most reliable in those years when faced with risk 
underestimation - which produced its heaviest effects in 2007 and 2008. The Normal-Clayton 
model emerged as second best, also showing a typically good performance in those years 
when there was a general tendency to underestimate risk. However, both of these models 
proved to be “over-cautious” in comparison to the others in the years when the risk was 
overestimated. The Pareto-Gumbel model showed roughly the same performance as the 
Normal-Clayton with the distinctive feature of being more successful than the latter in cases of 
overestimation and less successful when the risk was underestimated. In the rank order of 
models Normal-Gumbel can be placed last following Normal-Gaussian.7  

 
Figure 2 presents the average daily estimated value of ES given by the different portfolio 

models for the time horizon of 2001-2015. It should be noted that the discrete points belonging 
to the particular years are connected with straight lines. It is clearly visible that, for the models 
with normal marginals, ES seems to be more stable over time, and moves on a less high level 
than for the two models with Pareto marginals. In 2002, for instance, the average daily ES with 
the value indicating almost 30 percent loss for the Pareto models was about six times higher 
than that of the approximately 5 percent estimated for the models with normal marginals.   

                                                             
6 We have built a C#.Net application using R Statistics and Azure SQL to run the simulations. 
7 If we need the ranking order of the different models, we should rank them in each year based on the absolute 

value of their average Z-score a (lower number indicates a better performance) and summarize the yearly rank 
numbers. As aggregate rank numbers, this produces 37 for the Pareto-Clayton, 44 for the Pareto-Gumbel and 
Normal-Clayton, 47 for the Normal-Gaussian and 53 for the Normal-Gumbel models, respectively.  
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Figure 1 Average Z-score of 25 two-asset portfolios given by the different models 
between 2001 and 2015 

Source: own work 
 

 
Figure 2 Average daily estimated value of Expected Shortfall (ES) for 

the different portfolio models between 2001 and  2015 
Source: own work 

This can, however, be justified (see Figure 1) by the superior performance of models with 
Pareto marginals over those with normal. During the financial crisis - in 2008 - we can see a 
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similar pattern, although in 2009 the still higher estimated value of Expected Shortfall for Pareto 
models did not prove to be necessary to cover real losses. Indeed, as can be seen in Figure 
1, each model overestimated the risk for this year, and the extent of overestimation proved to 
be higher in the case of Pareto models. We also examined how the different copula models 
coupled with the two given marginals performed. Figures 3 and 4 show the average Z-score 
of the 25 two-asset portfolios for the copula models studied when the marginals were fixed to 
be normal and GPD, respectively. 

 

 

Figure 3 Average Z-score of 25 two-asset portfolios given by different copula  
models with normal marginals between 2001 and 2015 

Source: own work 
 

Figure 3 shows that, relying on normal marginals, the models using Clayton copula in 
general8 outperformed those featuring Gumbel and Gaussian dependency structures. In 
particular, in 9 cases out of 15, especially when the real losses were underestimated the 
average Z-score was the lowest for models with Clayton copula. Precisely the opposite applies 
to those years (e.g. 2003 or 2009) when we experienced overestimation. In the latter cases 
the Gumbel copula proved to be the best. 

 
Relying on GDP marginals (see Figure 4) the overall superior performance of models with 

Clayton to those with Gumbel copula can also be confirmed. In fact, the Clayton models show 
better performance in 9 years, and – similarly to the models with normal marginals – this 
occurred in the cases of risk-underestimation (with one exception).  
 

                                                             
8 The aggregate rank numbers for Clayton, Gaussian and Gumbel dependency structures are 27, 30, 37, 

respectively. 
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Figure 4 Average Z-score of 25 two-asset portfolios given by different 

copula models with GDP marginals between 2001 and 2015 
Source: own work 

 
 
 

 
Figure 5 Average Z-score of 25 two-asset portfolios given by different  

marginals between 2001 and 2015 
Source: own work 

 

In addition, the effect of choosing marginals for forecasting performance was studied, and 

Figure 5 shows the results. The superior performance of GPD models is remarkable. Indeed, 

in twice as many cases (10 as opposed to 5) the models with GPD marginals performed better 

than their counterparts with normal marginals.  
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Figure 6 Average daily estimated ES and VaR of a randomly selected  
two-asset portfolio between 2001 and 2015 

Source: own work  
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Finally, we try to illustrate the significance of model selection on the estimated risk given by 

both the old and the new capital requirements regime. Figure 6 shows the average daily VaR 

and ES of a randomly selected two-asset portfolio estimated at 99 and 97.5 percent confidence 

levels, respectively.9 The discrete points belonging to the specific years are connected with 

straight lines. 

Whilst the profile of the VaR curve is almost identical in all three cases, the values are 

slightly higher when a Clayton copula was fitted to normal marginals, and even higher when 

Pareto marginals were coupled with Clayton copulas. In addition, Figure 6 shows that, for the 

Normal-Gaussian model, the ES is nearly equal to its VaR counterpart. This is no surprise 

since, for such a benchmark distribution, the 97.5 percent confidence level for ES has been 

calibrated for the purpose of producing the same capital charge as the old 99 percent-VaR 

regime. It is also notable that changing the dependency structure (from the Gaussian copula 

to the Clayton) has not induced any change in this feature. Indeed, it is also true for the Normal-

Clayton model that the 97.5 percent-ES and the 99 percent-VaR curves practically coincide - 

which is in sharp contrast to our findings for the Pareto-Clayton model. In this case, the new 

regime provided higher risk estimates than the old. 
5 Concluding remarks 

 

For this paper, we performed back-tests on five different risk-estimation models for 25 
equally weighted, two-asset portfolios. These portfolios were constructed by randomly 
selecting various couples from among the FTSE 100 constituents. For modeling the marginals, 
the normal and general Pareto distributions, and, with respect to the dependency structure, 
the Gaussian, the Clayton and Gumbel copulas were fitted to the data and simulated. 
Compared to the benchmark model (i.e. normal marginals with the Gaussian copula) using 
Pareto marginals makes it possible to cope better with tail risk, whilst daily portfolio returns for 
each model were generated by the Monte Carlo simulation after the necessary parameters 
had been estimated. By relying on 10000 simulated returns, daily ES values were estimated, 
and realized returns (losses) were compared to them. For back-testing purposes we utilized a 
scoring function proposed by Acerbi and Székely (2014). 

 
Our empirical analysis has confirmed that using ES instead of VaR alone is not enough, 

and that the risk model has to be carefully selected and back-tested. The general Pareto 
distribution proved to be a prudent choice for risk models. In fact, among the five models 
considered, the model when GPD marginals were coupled with Clayton copula showed the 
best performance. It was, however, also clear that this model is susceptible to being “over-
cautious” in estimating loss. For two-asset portfolios the choice of marginals seems to be more 
significant than that of copula models – a finding which is in line with that of Low et al. (2013).  

 
There are some limitations of our current study that open a new perspective for additional 

research. First of all, the time period utilized for empirical analysis can be extended. In 
particular, involving the crisis-period of the pandemic can give a further insight into the 
performance of risk estimation models under stressful conditions. The effect of using better 
suited copulas could be different in multi-asset portfolios, and this also offers an interesting 
direction for future investigation. Additionally, we might propose and test dynamic or adaptive 
models in an attempt to overcome the problem that prudent risk measures tend to produce 
higher risk estimates in stable periods also. 

 
Acknowledgement: Project no. TKP2020-IKA-08 has been implemented with the support 

provided from the National Research, Development and Innovation Fund of Hungary, financed 
under the 2020-4.1.1-TKP2020 funding scheme. 
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